Самодельный солнечный коллектор для нагрева воды. Солнечный коллектор своими руками – дешевое тепло для обогрева дома! Изготовление солнечного коллектора с медным теплообменником

Использовать солнечную энергию для бытовых нужд мечтали всегда. Особенно актуально эта идея стала развиваться в последние пятьдесят лет, когда появились новые материалы, позволяющие конструировать довольно эффективные конструкции. Появились и инструменты, с помощью которых можно в домашних условиях производить изготовление сложных технологичных конструкций.

Идея нагревать воду с помощью солнца реализовывалась еще в древности. Обычные бочки, выставленные на солнце или в тени, в течение определенного времени поглощали тепловой поток из окружающей среды. Температура жидкости увеличивалась с ростом интенсивности солнечного излучения.

В семидесятых-восьмидесятых годах XIX века Йозеф Стефан и Людвиг Больцман открыли закон теплового излучения. Ими были выведены расчетные формулы, на основании которых определяется тепловой поток, получаемый от Солнца, на поверхности Земли. Для объектов, расположенных на Земле, используют следующую формулу:

где σ = 5,670367·10 -4 , Вт/(м 2 ·К 4) – постоянная Стефана-Больцмана;

F – площадь поверхности тепловосприятия, м 2 ;

С 2 – степень черноты поверхности тепловосприятия;

Т 1 – температура теплового излучателя, для поверхности Солнца принято считать, что она составляет Т 1 = 6000 К;

Т 2 – температура теплоприемника – это поверхность нагреваемая солнечным излучением, (T 2 = t 2 + 273), K;

где t 2 – температура теплоприемник (тела на Земле), °С;

ϕ – угол падения солнечных лучей, °.

Что такое коллектор и назначение солнечных коллекторов

Под солнечным коллектором понимают устройство, которое собирает энергию излучения, а затем перемещает накопленную теплоту потребителям. На практике используют еще один термин – гелиоколлектор.

По назначению солнечные установки (гелиоустановки) использования подразделяют:

  • гелиоконцентраторы – устройства, собирающие солнечную энергию в узкий поток. Их используют для плавки металла. В институте НПО «Физика-Солнце» (г. Ташкент) были разработаны и изготовлены плавильные печи, в которых достигнуты температуры более 5000…5500 °С;
  • солнечные батареи – устройства для преобразования излучения от Солнца в электрическую энергию;
  • гелиоопреснительные установки – машины, предназначенные для получения пресной воды из воды с высоким содержанием минеральных солей;
  • гелиосушильные установки – тепловые устройства, в которых осуществляется удаление влаги из овощей и фруктов с использованием энергии Солнца;
  • гелионагреватели (воздушный солнечный коллектор) – установки для передачи теплового потока от инфракрасного излучения к теплоносителям.

Как работает солнечный коллектор

Солнечное излучение кроме видимого света имеет еще и невидимый инфракрасный спектр. Именно он и переносит тепловую энергию. На основании исследований установлено, что в зоне умеренного климата интенсивность теплового излучения в полдень достигает более 5 кВт/м 2 . На рис. 1 представлена зависимость суммарной инсоляции для 48 ° северной широты.

Рис. 1 Суммарная инсоляция солнечного излучения для разных периодов умеренной зоны Европы

Информация к размышлению! Тепловую радиацию разделяют на: прямую и рассеянную. Поэтому даже в пасмурный день ощущается поступление солнечного теплового потока. Из представленной иллюстрации видно, что количество поступающей теплоты в летний и зимний периоды имеет значительные различия. Поэтому при проектировании устройств учитывают возможную эффективность, сообразуясь с затратами.

Принципиальная схема гелиоколлектора представлена на рис. 2. Солнечная радиация поступает внутрь коллектора через светопрозрачное ограждение. На приемной панели, окрашенной в черный цвет, происходит поглощение теплоты. В результате происходит нагрев черного тела. Последующий процесс теплопередачи происходит конвекцией. Теплота передается от нагретой стенки к потоку жидкости (газа), перемещаемого по трубопроводам. Подвижная среда нагревается.

Внимание! Для предотвращения тепловых потерь ограждение коллектора теплоизолируется. Так как внутри полученная теплота используется на нагревание потока, то интенсивность отраженного излучения от панели, воспринимающей излучение, невысока.

Описанная ниже конструкция — термосифонный солнечный коллектор, основан на медной трубе и алюминиевом оребрении. Медное оребрение имеет немного более эффективную теплоотдачу, но стоимость медных листов увеличивает цену коллектора в 3-4 раза. Пайка ребер к трубам -тоже непростая задача. Производительность способа переноса тепла от алюминиевых пластин медным трубам заключается в обеспечении хорошего теплового контакта. Как это реализуется — читайте ниже. По ссылке доступны данного прототипа.

Какова цель самодельной термосифонной системы:

  • Производительность, близкая к коммерческим коллекторам.
  • Низкая стоимость (до 1/4 от цены за покупную систему).
  • Длительный срок службы.
  • Легкость исполнения своими руками из доступных каждому материалов.

Солнце нагревает воду, снижает ее плотность и вода поднимается в резервуар. Нагретая вода выходит из коллектора, ее постепенно замещает холодная, подающаяся естественной циркуляцией из резервуара в коллектор через нижнее соединение. Насос в данной конструкции не нужен. Контроль осуществляется автоматически, так как движение воды останавливается, как только коллектор остывает ниже температуры накопительного бака. Принцип термосифона подробно рассмотрен в статье.

Этот вариант термосифонного коллектора не предусматривает использование при минусовых температурах, поэтому при первых заморозках систему необходимо сливать.

В качестве примера взяты два прототипа коллектора одинаковой конфигурации, поэтому фото могут отличаться в некоторых несущественных деталях.

Термосифонная система своими руками

Из чего собран термосифонный солнечный коллектор:

  • Гофрированный поликарбонатный лист SunTuf.
  • Рама из пиломатериалов.
  • Фанера или ОСБ для основы.
  • Жесткая теплоизоляция (теплоизолятор может быть любым, от этого будут зависеть «слои» подложки — с жесткой изоляцией в данной конструкцией заднюю часть коллектора больше ничем не закрывали).
  • Алюминий листовой для абсорбера 0,5 мм.
  • Трубы медные.
  • Фитинги медные.
  • Термостойкий силикон.
  • Винты, краска, волнистые рейки для крепления поликарбоната (их можно изготовить из досок лобзиком).

Данная конструкция термосифонного солнечного коллектора основывается на алюминиевом абсорбере. Ребра увеличивают площадь передачи тепла от пластины к трубе и имеют паз по форме этой трубы.

2 способа сделать абсорбер медной трубы из алюминия

Использование листового алюминия в связке с медными трубами очень часто используется канадцами, американцами, австралийцами. У нас же это непопулярное решение (насколько мне известно). Кто-то занимается , кто-то просто красит трубы.

Приспособление для гибки листового алюминия изготавливается из фанеры 19 мм толщиной и длиной около метра, в которой есть канавка квадратной формы 16Х16 мм. Для формирования углубления под трубу взят стальной стержень диаметром 16 мм (труба в большинстве коллекторов берется полдюймовая).


«Гнездо» для формовки алюминия сделано из двух брусков фанеры 16 мм, так приклеенных и привинченных к основе, чтобы образовать квадратную канавку. Листовой алюминий некоторых брендов уже имеет небольшой сгиб ровно по середине листа, а если его нет — нужно быть более внимательным при гибке.

Метод прессования молотком кажется неубедительным на первый взгляд, но на практике прекрасно работает. Процесс гибки алюминия с помощью прута и кувалды понятен из фото: положите металл на фанеру точно над пазом, установите стержень, придерживайте его и без сверхусилий бейте вертикально поставленным молотком по конструкции. Такой способ не дает ребрам загибаться вверх.


Как только вы «набьете руку», гибка одного абсорбера будет занимать не более 20 секунд.

Не забывайте проверять плотность прилегания абсорбера к трубе.

Фанерку для гибки всегда можно усовершенствовать держателями для стержня, ограничителем по одной стороне для того, чтобы лист алюминия не скользил по фанере.

Не стоит делать слишком длинные ребра, так как медь и алюминий расширяются с разной скоростью и короткие ребра (60-70 см) справятся с этим лучше. Ребра необходимо выровнять, опрессовать.

Существует способ полностью обернуть трубу алюминием. Пошаговые фото этого процесса смотрите ниже.

Этот метод позволяет добиться полного контакта абсорбера с медной трубой, что улучшает производительность коллектора, но и усложняет процесс создания абсорбера.

Конечно, описанные здесь способы не предел фантазии. Во время подготовки статьи мне встречались и высокотехнологичные для домашнего использования решения, такие как эти:

Как выровнять алюминиевые ребра абсорбера

Вероятно, можно придумать множество вариантов, как выровнять абсорбер после гибки. В данном случае автор конструкции соорудил пресс, который вы видите на фото. Ему нужно было обработать много алюминия для теплого пола и этот пресс работал быстрее и аккуратнее способа с молотком.

Пресс продавливает алюминий закрепленным стальным стержнем. Эта конструкция вполне сносно работает благодаря длинным рычагам, увеличивающим массу тела.

Даже если оребрение идеально совпадает с формой трубы, силикон обязательно нужен для оптимизации сцепления между металлами.

Как оптимизировать сцепление между металлами

В канавку наносится тонкий слой термостойкого силикона. Силикон обладает теплопроводностью в 10 раз большей, чем воздух, поэтому даже при очень хорошем сцеплении он не помешает. Помимо теплопроводности, силикон уменьшает риск гальванической коррозии путем герметизации от возможной влаги. Более подробно про улучшение сцепления между абсорбером я расскажу в следующей статье.

Укладка дополнительной полосы алюминия под трубу

В некоторых прототипах коллекторов ставят еще одну пластину алюминия под каждой медной трубой. Это дополнительная зона контакта между медью и абсорбером, помогающая избежать потери тепла на внешнем крае ребра. Про эффективность алюминиевого абсорбера готовлю отдельный материал.

Изготовление труб для коллектора

Размер коллектора должен быть таким, чтобы как можно меньше осталось отходов от резки медной трубы:). На фото размер фанеры 238Х117 см (перевожу дюймы в сантиметры, поэтому цифры выглядят немного странно). Параметры основы напрямую зависят от размера материала, который накроет коллектор (стекло или поликарбонат).

Так будет выглядеть медная решетка. Вода будет поступать в нижнем правом углу, проходить весь путь и выходить в верхнем левом.

Вырезаем трубы нужной длины. После резки необходимо зачистить места среза, особенно с внутренней стороны. На специальном инструменте для резки труб предусмотрено лезвие для этого. На фото очистка переходников и труб от остатков резки.

Примеряем алюминиевые ребра, подгоняем до идеального соприкосновения между отдельными деталями абсорбера. Режем отрезки трубы под соединения. Напоминаю, все замеры должны быть идеальными — расстояние между трубами должно равняться ширине ребер абсорберов.

Первый стояк получает Т-образный фитинг (на прием воды), а последний стояк получает коленчатое соединение. На другом конце коллектора колено идет к первой трубе, а тройник к последней (выход горячей воды). Такая обвязка обеспечивает примерно одинаковую циркуляцию.

Припаиваем все детали решетки.

После того, как решетка остынет, ее нужно будет тщательно отмыть от флюса жидкостью для мытья посуды.

Спаянные трубы должны пройти испытание на герметичность. На фото показан простейший способ, который прекрасно работает. Необходимо закрыть выпускное отверстие в нижнем конце и медленно наполнить сетку водой. Если у вас есть возможность использовать небольшое давление, то это вообще отлично.

Как сделать раму для солнечного коллектора

Рама должна иметь такой размер, чтобы в нее стала фанера с абсорбером. Углы скреплены шурупами и клеем. Рама в данном случае была загрунтована и покрашена эпоксидной краской.


Установка трубной сетки

Прижимаем трубы к фанере, добавляем фитинги к подаче и обратке. В данной конструкции выходы предусмотрены в заднюю часть коллектора. Можно припаять впускной и выпускной клапан сразу.

Прокладываем полосы алюминия под трубы. Выше я уже обращал внимание, зачем это делается. Полоса силикона заполняет пустоты между трубой и пластиной. Далее наносим силикон на всю пластину.

Силикон остается гибким при тех температурах, в которых придется работать коллектору. Это очень хороший способ сохранения и передачи тепла от абсорбера к решетке. В продаже есть термостойкие силиконы с наполнителями, увеличивающими теплопроводность.

Установка абсорберов


В канавку ребра наносим полоской герметик. Слой должен быть очень тонким. Плотно прибиваем ребра к фанере с помощью степлера скобами из нержавеющей стали. В одном из прототипов используются шурупы.


Установка алюминиевого абсорбера
Закрепление оребрения степлером

На абсорбер необходимо нанести . В гаражных условиях очень удобно воспользоваться краской для каминов и барбекю, в продаже есть и селективные краски для коллекторов.

Нужно очистить поверхность алюминия и меди от герметика и других загрязнений с помощью ацетона или другого подходящего растворителя. Абсорбер должен быть абсолютно сухим перед покраской.

Установка изоляции на солнечный коллектор

В данном случае используется жесткая изоляционная плита. Полистирол брать нежелательно из-за высоких температур. На фото изоляция приклеивается полиуретановой пеной. На плиту обязательно нужно установить груз, так как пена будет пытаться расшириться.

Вовсе не обязательно использовать поликарбонат, как в данном случае. Но именно гофрированный поликарбонат наиболее популярен в самоделках у американцев. Он обеспечивает высокую теплопередачу, прочный и гибкий, фильтрует ультрафиолет (так утверждает автор прототипа, но встречавшийся мне ПК был УФ-пропускающим). Для коллектора это хорошие показатели.

Листы поликарбоната в этой конфигурации соединены путем наложения гофра на гофр и склеены прозрачным силиконом.

Устанавливаем опоры для остекления. Здесь используется тонкостенная оцинкованная металлическая трубка кабелепровод. Необходимо просверлить отверстие в раме, как на фото. Проклеить паз. К слову, на фотографиях один из вариантов — все делается точно так-же, как и с медью.

На ребро рамы нужно наложить полоску древесины. Высота полоски должна соответствовать высоте «волны» поликарбоната. Уложите лист так, чтобы ребра поликарбоната можно было герметично прикрутить к раме. ПК вверху и внизу устанавливается на специальную волнистую полосу, используйте силикон для герметизации швов.

Над листом поликарбоната необходимо установить полосы древесины, которые будут равномерно прижимать его в верхней и нижней части. На фото хорошо видно, о чем я.

На фото видны внешние сантехнические детали. Резервуар находится прямо за стеной над коллектором. В холодном климате трубы необходимо теплоизолировать. Гофрированный подвод предусмотрен на случай каких-либо передвижений коллектора. Сливной клапан для сброса воды на зиму.


Бак для коллектора и сантехнические работы

В качестве резервуара для воды используется старый газовый бак. Устанавливать бак необходимо выше коллектора, чтобы работала естественная циркуляция. Если открыть запорные краны, горячая вода будет поступать из резервуара с холодной стороны электрического бака. Холодная вода поступает в коллектор из старого слива газового бака, горячая вода из коллектора выходит в старый выпускной клапан. Выпускной клапан установлен в резервуар и коллектор. Термодатчик так же установлен на бак и на солнечную панель.

На фото бак для сбора горячей воды из коллектора. Солнечная панель находится за стеной, на выходе двух труб.

На фотографии новый электрический нагреватель для резервного подогрева. Горячая вода из коллектора поступает во входное отверстие для холодной воды в этом баке.

Существуют разные варианты резервуаров для солнечного коллектора, например .

Замеры температуры

При температуре около 60 градусов вода поступает в резервуар. Бак прекрасно держит температуру всю ночь, электрический нагреватель не включали. Воду из коллектора используют на стирку, душ и мытье посуды. За бортом температура воздуха была не выше 30 градусов (май 2010 года). Испытания производительности в деталях в следующей статье.

Вариант крепления системы:


Содержание

Современный рынок предлагает большое разнообразие нагревательных приборов, но их стоимость бывает слишком высока. Особенно если нужен не один, а два-три нагревательных бака. Цены на коммунальные услуги постоянно растут, люди вынуждены искать способы сэкономить на отоплении, и подогреве горячей воды. Есть альтернативный источник отопления, поэтому можно сделать солнечный коллектор своими руками, который будет использовать энергию солнца для домашних нужд. Это экономичный вариант для отопления помещений и обеспечения жилых домов теплой водой.

Солнечный коллектор для отопления дома

В отечественных магазинах можно найти подобное оборудование, но цена будет даже выше, чем сумма, потраченная на установку привычной системы отопления. Солнечный коллектор можно изготовить самостоятельно, используя подручные материалы, которые всегда найдутся в арсенале запасливого хозяина: жестяные листы, банки, пластиковые бутылки, листы поликарбоната, стеклянные трубки, прочее.

Принцип работы

Самодельные коллекторы прекрасно подходят для отопления, подогрева воды в небольших домах, коттеджах, подогрева бассейнов. Решив собрать дома своими руками подобный агрегат, нужно вспомнить физические законы, разобраться в принципе его работы:

  • Приемное устройство поглощает (абсорбирует) солнечную энергию: в качестве таковых могут быть использованы медные или стеклянные поверхности черного либо темного цвета. Именно эти материалы обладают большей абсорбцией и оптимальны для подогрева воды или других жидкостей.
  • Тепло от абсорбера передается на бак с теплоносителем: водой, антифризом, другой специальной жидкостью, которая будет обогревать ваш дом.
  • Теплоноситель по трубам подается в радиаторы, используется для хозяйственных нужд (горячая вода на кухне, в ванной комнате).
Принцип работы самодельного солнечного коллектора

Летний вариант конструкции

Можно сделать солнечный коллектор своими руками достаточно быстро, это не очень сложная работа. Для применения его на даче, в летнее время, вам не понадобятся сложные схемы и особое оборудование:

  • Если вода нужна только на улице (летний душ, горячая вода для стирки, бассейна, мытья посуды, прочих хозяйственных потребностей), бак тоже устанавливается на улице.
  • Когда вода нужна в доме, бак будет установлен внутри.
  • В такой системе происходит естественная циркуляция жидкости, поэтому бак нужно устанавливать на 8-10 сантиметров выше уровня батареи.
  • Для соединения бака с батареей (абсорбером) понадобятся трубы определенного диаметра.
  • При большой протяженности системы лучше установить насос, который будет усиливать движение теплоносителя.

Солнечный коллектор из металлопластиковых труб
Важно! Если планируете применять солнечный коллектор для нагрева воды не только летом, но и в холодное время года, схема будет другой, нужно учесть некоторые нюансы.

Можно ли использовать солнечный коллектор зимой

Для круглогодичного использования устройства, нужно подробнее узнать, как работает солнечный коллектор зимой. Главное отличие - теплоноситель. Поскольку вода может замерзать в трубах контура, ее нужно заменить антифризом. Работает принцип косвенного нагрева с установкой дополнительно бойлера. Далее схема такова:

  • После того как антифриз нагреется, он поступит от батареи, расположенной на улице, в змеевик бака с водой и нагреет ее.
  • Затем теплая вода будет подаваться в систему, остывшая возвращаться обратно.
  • Обязательно нужно установить датчик давления (манометр), воздухоотводчик, расширительный клапан для сброса избыточного давления.
  • Как и в летнем варианте, для улучшения циркуляции необходимо предусмотреть наличие циркуляционного насоса.

Солнечный коллектор на крыше дома в зимнее время года
Нужно знать! Существуют разные схемы коллекторов, которые можно изготовить самостоятельно, они различаются конструкционными особенностями, имеют достоинства и недостатки.

Устройство и виды

Условно данные системы можно классифицировать на два вида :

  • жидкостные (о которых мы говорим в данном материале);
  • воздушные солнечные коллекторы, в которых используется не жидкость, а нагретый воздух.

Также они разделяются по КПД, ведь обеспечивают различную теплоотдачу. Это зависит от материалов, используемых для изготовления батареи, ее площади. Оптимальным местом расположения абсорбера является крыша :

  • попадает максимальное количество солнечного света,
  • имеет большую площадь,
  • установленная на крыше батарея не занимает полезное пространство, никому не мешает.

Воздушный солнечный коллектор

Конструкция солнечного коллектора может быть нескольких видов, основные :

  • вакуумный отопительный коллектор, имеющий самую сложную конструкцию. Вакуумные солнечные коллекторы отлично подходят для обогрева помещений, нагрева воды в любое время года, они полностью обеспечат небольшой дом, коттедж;
  • плоский солнечный коллектор может быть жидкостным и вакуумным. Это наиболее распространенный тип поскольку достаточно прост в монтаже, при этом эффективен, может обеспечивать дом необходимым количеством тепла для обогрева помещений, водой для хозяйственных нужд;
  • термосифонный - в качестве абсорбера используются стеклянные или металлические трубки;
  • трубчатый - самый простой тип, изготовить который можно для дачи, достаточно примитивный, не подходит для использования в зимнее время.

Нас интересует конструкция, которая обеспечивает наличие горячей воды и отопления в доме в любое время года, остановимся на двух оптимальных вариантах, рассмотрим устройство вакуумного солнечного коллектора и плоского.

Плоский коллектор

Это наиболее распространенный вид коллектора, который можно изготовить самостоятельно. Хорошо подходит для использования в теплое время года для подогрева воды, зимой коэффициент полезного действия снижается.

Особенность конструкции состоит в следующем :

  • корпус имеет плоскую прямоугольную или квадратную форму, выполнен из металла или другого материала, имеющего высокий показатель теплопроводности, покрыт черной краской;
  • внутри располагают пластину, в которой уложен змеевик из медной трубки небольшого сечения;
  • по трубкам циркулирует теплоноситель: вода, пропилен-гликоль, антифриз, другие подходящие жидкости;
  • также внутри корпуса укладывают теплоизоляционный материал, который минимизирует потери тепла;
  • собирая коллектор такого типа, нужно запастись листом поликарбоната или стекла, который будет служить крышкой и выполнять две функции: препятствовать проникновению мусора, осадков, усиливать подогрев.

Составная часть плоского солнечного коллектора
Важно! Перед тем как собрать конструкцию, нужно проверить швы на герметичность, дабы не допустить попадания влаги, пыли внутрь агрегата, выветривания теплого воздуха.
Совет по уходу! Чтобы избежать снижения КПД, нужно регулярно протирать стеклянную поверхность от пыли, загрязнений.

Вакуумный коллектор

Для водяного отопления можно использовать солнечные коллекторы вакуумного типа. Благодаря конструкционным особенностям они являются более мощными: способны вырабатывать тепловую энергию, которой хватит на подогрев воды и отопление помещений.

Особенности конструкции :

  • минимизировать потери позволяют трубки, которые помещаются в колбах с выкачанным воздухом;
  • сверху трубки покрыты абсорбционным материалом, поглощающим световую энергию, внутри - наполнены антифризом (хладагентом);
  • концы трубок соединены с трубой, по которой проходит теплоноситель;
  • при нагреве антифриз закипает, преобразуется в пар, который, в свою очередь, поднимается вверх и нагревает теплоноситель;
  • у данной конструкции есть недостаток: если хоть одна трубка выйдет из строя, ремонт становится довольно проблематичным, так как они соединены последовательно. Придется производить замену всех «внутренностей».

Воздушная солнечная система из вакуумных трубок

Такой воздушный солнечный коллектор для отопления будет более эффективен и пригоден для того, чтобы поддерживать температуру в системе в любой сезон. Хотя в холодное время КПД работающего коллектора может незначительно снижаться из-за короткого светового дня и малой световой активности.

Совет по уходу! Обратите внимание на внутреннюю поверхность накопительного бака для воды, она со временем покрывается накипью, нужна очистка. Периодичность зависит от качества воды в местности.

Примите к сведению: изготовить в кустарных условиях вакуумные трубки с выкачанным воздухом нереально, их придется купить. Это несколько увеличит затраты на обустройство такого типа коллектора.

Изготовление самодельного солнечного коллектора

Если вы заинтересовались вопросом, как сделать солнечный коллектор, рассмотрим основные этапы изготовления плоских конструкций :

  • Для начала нужно рассчитать габариты будущего обогревателя, исходя из площади отапливаемого помещения. Они также будут зависеть от уровня активности солнца в конкретном регионе, расположения дома, местности, используемых материалов и других факторов. Но отправная точка - все-таки площадь поверхности, на которой он будет установлен.
  • Продумать, из чего будет изготовлен абсорбер (приемник). Для этих целей можно использовать медные и алюминиевые трубки, стальные плоские батареи, свернутый резиновый шланг и др.
  • Приемник должен быть окрашен в черный цвет.
  • Затем нужно изготовить корпус коллектора, для этого подойдут различные материалы. Наиболее распространенный - древесина, можно использовать стекло. Если есть старые окна с остеклением - идеальный вариант.
  • Между днищем корпуса и абсорбером нужно проложить теплоизоляционный материал (минеральную вату или пенопласт), который будет препятствовать потерям тепла.
  • Всю площадь нагревателя закрыть металлическим листом (из алюминия или тонкой стали), который будет усиливать эффект.
  • Сверху уложить трубы змеевика, прикрепить к металлическому листу при помощи строительных скоб или другими способами, концы змеевика вывести наружу.
  • Сверху тепловые солнечные коллекторы накрывают светопропускающим материалом, чаще всего стеклом. Можно использовать прозрачный поликарбонат, который более практичен: стоек к механическим ударам, неприхотлив в уходе.
  • Бак для воды нужно покрыть изолирующим материалом или покрасить черной краской, чтобы замедлить процесс остывания воды.
  • Смонтировать нагревательный элемент на месте и подключить при помощи труб к накопительному баку с водой.
  • Провести пусковые работы, проверить разводку по всей длине на наличие течи из-за некачественных соединений.

Схема размеров и расположения солнечного воздушного коллектора
Важно! Для лучшего теплообмена необходимо оставлять между стеклом и нагревательными трубками расстояние примерно 10-15 мм. Все стыки должны быть хорошо загерметизированы.

Подведем итоги

В условиях тотального подорожания коммунальных услуг можно использовать альтернативные способы обогрева помещений, подогрева воды для хозяйственных нужд. В других странах солнечные коллекторы применяются для отопления довольно давно.

Если вы не хотите платить большие деньги за промышленный водяной коллектор, его можно собрать самостоятельно, используя подручные материалы. Хотите, чтобы конструкция была более солидной и действительно могла удовлетворять потребности в горячей воде и отапливала ваш дом? Тогда придется посетить строительный магазин, подготовиться к сборке более основательно: приобрести вакуумные колбы, специальные трубки, листы стекла или поликарбоната, другие комплектующие.


Резка и зачистка медных труб для солнечного коллектора

Когда будете решать вопрос, какая система оптимальная, принимайте во внимание: солнечные коллекторы, как любое техническое решение, имеют плюсы и минусы, которые обязательно нужно учитывать.

Плюсы и минусы гелиосистемы

Из положительных сторон выделяют :

  • экологически чистый вид энергии, получаемый бесплатно;
  • снижение расходов на оплату коммунальных услуг за централизованный подогрев воды до 40-50 %;
  • небольшой срок окупаемости;
  • возможность подогревать воду для хозяйственных нужд и отапливать небольшие помещения d зимний период;
  • широкий выбор материалов, простота сборки конструкций.

К отрицательным моментам можно отнести :

  • трудозатраты на создание светового коллектора;
  • понижение коэффициента полезного действия в зимнее время, что делает практически невозможным использование таких систем в северных широтах;
  • нужны профилактический уход и очистка;
  • в холодное время необходимо использовать антифриз, что влечет дополнительные расходы.

Сегодня вакуумные солнечные коллекторы можно встретить преимущественно в отоплении и горячем водоснабжении. Такие приборы по принципу работы напоминают обычные панельные конструкции – у тех и других изолированный корпус, сверху накрытый стеклом.

Основным отличием можно считать способ преобразования солнечной энергии – этот процесс происходит в стеклянных трубах с созданным внутри вакуумом. Собственно, именно поэтому такую конструкцию называют вакуумной. В каждой трубке имеется тепловой канал, выполненный в виде медного патрубка, наполненного теплоносителем. Для соединения трубок используются отдельные стыковочные элементы.

Именно эти особенности конструкции и предопределяют основные преимущества вакуумных коллекторов. Да, такие системы очень сложные, за ними нужен особый уход, а ввиду высокой стоимости многим такие коллекторы попросту не по карману. Но высокая производительнос ть с лихвой окупает все эти недостатки – панельные коллекторы, как известно, способны работать лишь в летнее время, а вакуумные используются даже зимой.

Основное достоинство таких систем – практически полное отсутствие теплопотерь , ведь что может быть лучшим изолятором, чем вакуум?

К другим преимуществам можно отнести следующее:

  • простоту ремонта – каждый поврежденный узел можно с легкостью заменить;
  • эффективность работы даже при минус 30°С;
  • надежность – гелиосистема продолжит свою работу даже после того, как одна из трубок выйдет из строя;
  • способность генерировать температуру более 300°С;
  • возможность работы даже в облачную погоду и полное поглощение солнечной энергии , в том числе невидимых спектров;
  • незначительную парусность коллектора.

Конструкцию гелиосистемы можно устанавливать под углом, не превышающим 20°. Более того, ее поверхность следует периодически очищать от грязи и снега.

В конструкции коллекторов используются два типа стеклянных трубок:

  • коаксиальные;
  • перьевые.

Ознакомимся подробнее с каждым из них.

Трубка коаксиальная

Это своего рода термос, который состоит из двойной колбы. Наружная колба покрывается специальным веществом, поглощающим тепло. Между двумя трубками создается вакуум. Это позволило добиться того, что тепло при работе передается непосредственно от стеклянных колб.

Обратите внимание! В вакуумных коллекторах используется специальное стекло, изготовленное из боросиликатов. Такой материал пропускает большее количество солнечной энергии.

Внутри каждой трубки находится еще одна – медная (ее заполняют эфирной жидкостью). При повышении температуры эта жидкость испаряется, передает накопленное тепло и стекает обратно в виде конденсата. Далее цикл повторяется снова и снова.

Трубка перьевая

Такого рода трубки состоят из одностенной колбы. К слову, по толщине стенок они существенно превышают коаксиальные аналоги. Медная трубка усиливается специальной гофрированной пластиной, обработанной влагопоглощающим веществом. Выходит, что воздух в данном случае выкачивается из всего теплового канала.

Такие каналы, к слову, тоже бывают разными:

  • прямоточными;
  • «Хит пайп».

Каналы типа «Хит пайп»

Другое их название – тепловые трубы. Они работают следующим образом: эфирная жидкость в закрытых трубах при повышении температуры поднимается вверх по каналу, после чего конденсируется там в специально оборудованном теплосборнике. В последнем жидкость передает тепловую энергию и опускается вниз по трубке. Из теплосборника тепло передается дальше в систему при помощи циркулирующего теплоносителя.

Коаксиальная вакуумная трубка heat-pipe с 2-трубным manifold’ом

Характерно, что металлические трубки здесь могут быть не только медными, но и алюминиевыми .

Прямоточные каналы

В каждом из таких каналов в стеклянной трубке находятся сразу два металлических патрубка. По одному из них жидкость попадает в колбу, нагревается там и выходит по второму.

Сооружаем вакуумный солнечный коллектор своими руками

В принципе, вакуумную гелиостанцию можно сделать и своими руками, но это крайне сложная и ответственная работа, ведь вам нужно не только создать вакуум в каждой из трубок, но и грамотно впаять абсорбер. Для всего этого требуется и специализированн ое оборудование, и соответствующие знания. Более того, во время монтажа следует соблюдать целый ряд условий.

  1. Выбор правильного места установки (обязательно с юга), устранение всего, что может создавать тень.
  2. Обеспечение движения теплоносителя исключительно снизу вверх.
  3. Предотвращение перегрева коллектора – это выведет из строя всю систему.

Словом, вакуумная гелиостанция – это крайне сложная система , которую лучше приобретать уже в готовом виде. Действительно, можно ли создать самодельную модель такого устройства, если заводов, выпускающих такого рода продукцию, в мире не более двух десятков? Именно по этой причине в нашем случае можно говорить лишь о самостоятельной сборке конструкции из заводских колб.

Но и тут есть проблема. Для правильной установки нужно иметь слесарские навыки, чтобы не нарушить герметичность труб. Поэтому намного проще купить готовое, пусть и дорогое изделие, чем собрать самому и каждый раз, включая его, опасаться поломок.

Как собрать воздушный коллектор

Если же вы решились провести сборку гелиосистемы своими руками, для начала позаботьтесь обо всех необходимых инструментах.

Что потребуется в работе

1. Отвертка.

2. Разводной, трубный и торцевой ключи.

Технология сборки

Для сборки желательно обзавестись хотя бы одним помощником. Сам процесс можно разбить на несколько этапов.

Первый этап . Сначала соберите раму, желательно сразу в том месте, где она будет установлена. Оптимальный вариант – крыша, туда можно по отдельности передать все детали конструкции. Сама процедура монтажа рамы зависит от конкретной модели и прописывается в инструкции.

Второй этап. Прочно закрепите раму на крыше. Если крыша шиферная, то используйте брус обрешетки и толстые шурупы, если бетонная – то обычные анкера.

Обычно рамы рассчитаны на монтаж на ровные поверхности (максимум – под 20-градусным наклоном). Герметизируйте места крепления рамы к поверхности крыши, иначе они будут протекать.

Третий этап. Пожалуй, самый сложный, ведь вам предстоит поднять на крышу тяжелый и габаритный накопительный бак. Если нет возможности использовать спецтехнику, укутайте бак в плотную ткань (во избежание возможных повреждений) и поднимите его на тросе. Затем прикрепите бак к раме с помощью шурупов.

Четвертый этап . Далее вам предстоит смонтировать вспомогательные узлы. Сюда можно отнести:

  • ТЭН;
  • температурный датчик;
  • автоматизированн ый воздуховод.

Каждую из деталей установите на специальную смягчающую прокладку (такие тоже идут в комплекте).

Обратите внимание! Температурный датчик закрепляется с помощью торцевого ключа!

Пятый этап . Подведите водопровод. Для этого можете использовать трубы из любого материала, главное, чтобы он выдерживал температуру в 95°С тепла. Кроме того, трубы должны быть устойчивыми к низким температурам. С этой точки зрения больше всего подходит полипропилен.

Шестой этап . После подключения водопровода заполните накопительный бак водой и проверьте на герметичность. Посмотрите, не протекает ли трубопровод – оставьте на несколько часов наполненный бак, после чего внимательно все осмотрите и, в случае необходимости, устраните неисправность.

Седьмой этап . Убедившись, что герметичность всех соединений в норме, приступите к установке нагревательных элементов. Для этого оберните медную трубку листом алюминия и поместите в стеклянную вакуумную трубку. На нижнюю часть стеклянной колбы наденьте чашку-фиксатор и резиновый пыльник. Медный наконечник на другом конце трубки вставьте до упора в латунный конденсатор.

Обратите внимание! На стеклянных трубках вы заметите вязкое вещество. Не удаляйте его ни в коем случае – это термоконтактная смазка.

Осталось лишь защелкнуть чашку-фиксатор на кронштейне. Аналогичным образом установите остальные трубки.

Восьмой этап . Установите на конструкции монтажный блок и подведите к нему питание в 220 вольт. Затем подсоедините к этому блоку три вспомогательных узла (их вы установили на четвертом этапе работы). Несмотря на то, что монтажный блок влагозащищен, постарайтесь накрыть его козырьком или какой-либо другой защитой от атмосферных осадков. Затем подсоедините к блоку контроллер – он позволит мониторить и регулировать работу системы. Установите контроллер в любом удобном месте.

На этом монтаж вакуумного коллектора закончен. Внесите все необходимые параметры в контроллер и запустите систему.

И последний (но не по значимости) важный совет: не забывайте о регулярном обслуживании установки – это не только повысит эффективность ее работы, но и продлит срок эксплуатации .

Видео – Вакуумный солнечный коллектор

СОЛНЕЧНЫЙ КОЛЛЕКТОР ИЗ ПОЛИКАРБОНАТА

Я уже давно задумал сделать на даче солнечный коллектор для нагрева воды в летнем душе. Идея эта появилась еще два года назад, с началом строительства бани, но только в прошлом году я приступил к ее практическому воплощению. Спросите: «Что я делал до этого»? А я искал какой же мне вариант реализации выбрать. Сейчас уже даже смешно вспоминать, какой у меня был первоначальный план.

Самый распространенный и наверное самый надежный вариант самодельных солнечных водонагревателей - это коллектор спаянный из медных трубок (схема чуть выше). Я тоже изначально думал делать именно такой. Но проблема в том, что он получается слишком уж дорогим и довольно тяжелым. У меня же стояла задача сделать максимально дешевую и легкую конструкцию.

Именно поэтому я остановился на варианте использования в качестве рабочей поверхности листового сотового поликарбоната. Развитие идеи использования пластиковых панелей с внутренней канальной структурой начиналось еще с мысли об использовании ПВХ-сайдинга, но потом на глаза попался поликарбонат - его не надо «набирать» из нескольких досочек. Моя уверенность в правильности выбранного материала для солнечного коллектора стала укрепляться, когда комментариях к описанию моих тестовых конструкций читатели начали предлагать использовать именно сотовый поликарбонат или полипропилен. А недавно я еще и в интернете наше описание нескольких похожих действующих солнечных нагревателей.

Итак, курс на изготовление пластикового солнечного коллектора выбран. Приступаем к реализации.

Первым делом я для себя решил, что мой коллектор будет собран без использования стекла. В качестве ветрозащиты я собираюсь использовать тот же материал, что и для рабочей поверхности, т.е. сотовый поликарбонат.

Это прозрачный материал, светопроницаемость достаточно хорошая, поэтому я не думаю, что он будет очень сильно снижать КПД конструкции по сравнению со стеклом. А вот плюсов у такой замены фронтальному стеклу я вижу массу. Благодаря тому, что поликарбонат фактически двухслойный, это будет равносильно двойному остеклению. Это поможет создать отличный парниковый эффект.

Второй плюс поликарбоната - прочность. Он с легкостью переносит крупный град. Даже если во время града фронтальное покрытие и пострадает, это разрушение ни как не скажется на работе системы в целом. И уж конечно, последствия не будут столь катастрофическими, как при разбитом стекле.

С фронтальным покрытием определились. Следующим важным элементом солнечного коллектора является задняя теплоизоляция. Я решил использовать для этого обычный листовой пенопласт. Причины такого выбора: легкость и дешевизна. Некоторые производители используют в качестве заднего утеплителя тот же сотовый поликарбонат или полипропилен. Решение конечно изящное, коллектор получается тоненький. Но лично мне кажется, что это будет чуть дороже. К тому же, у меня на даче уже был лист пенопласта подходящего размера - остался со времен утепления дома.

Следующий шаг - надо определиться с толщиной материала, который будет использоваться в качестве коллектора. В продаже есть листы от 4 до 25 мм. Некоторые советуют «брать больше», мотивируя это тем, что получится больше площадь сечения внутренних каналов, по которым будет циркулировать жидкость, что уменьшает сопротивление потоку. Но простой расчет для листа толщиной 4 мм дает нам суммарную площадь сечения каналов в районе 35 кв.см на погонный метр - это равносильно сечению трубы диаметром 6-7 см. Не знаю как вам, но мне этого сечения более чем достаточно. К тому же надо помнить вот еще что: чем больше будет толщина рабочего листа, тем больше будет объем внутренних каналов, т.е. тем больше туда поместится теплоносителя, а он будет иметь больший вес и этим весом будет деформировать нашу систему. В коллектор из листа поликарбоната толщиной 4 мм поместится около 3-4 литров на 1 кв.м, а если взять лист 10 мм, то теплоносителя в нем будет уже около 10 литров на 1 кв.м. А еще большой объем теплоносителя будет дольше прогреваться солнцем.

Короче, я решил использовать сотовый поликарбонат толщиной 4 мм. Было куплено два листа размером 210х100 см. Один - для рабочей поверхности, второй - для фронтальной защиты.

Кстати, еще на этапе обдумывания проекта я решил делать солнечный коллектор площадью около 2 кв.м. Для такой площади мне понадобилось два отрезка метровой длинны из сплошного 12-ти метрового листа, в которых продают сотовый поликарбонат. Ширина стандартного листа 210 см. - мне это как-раз подходит.

Было еще несколько вариантов. Например, можно было бы сделать два солнечных коллектора размером 1х1 метр, их будет проще перевозить. Я не стал этим заниматься из-за увеличения объема работ по сборке двух коллекторов вместо одного. К тому же у меня сборочная площадка и место будущей эксплуатации - одна и та же дача, не придется думать как перевезти здоровенную конструкцию.

Еще можно было бы сделать вертикально ориентированный коллектор размером 1х2 метра, но в этом случае мы бы уменьшили суммарное сечение внутренних каналов коллектора (в 2 раза), а также увеличили бы их длину (тоже в 2 раза), что примерно в 4 раза увеличило бы сопротивление потоку теплоносителя и снизило бы КПД системы, в сравнении с горизонтально ориентированным коллектором 2х1 м.

Для сборки и подключения коллектора я также купил:

Канализационные трубы ПВХ. Диаметр - 32 мм. Длина - 2 м.

Заглушки для этих труб

Полипропиленовые водопроводные уголки-фиттинги с металлической резьбой

Гибкие шланги с резьбовым соединением

Канализационные трубы были выбраны вместо водопроводных т.к. у них больше диаметр и тоньше стенки - проще будет резать трубу вдоль. Учитывая, что коллектор будет работать не под давлением, прочности такой трубы вполне хватит.

Штатные заглушки для канализационных труб будут использованы по прямому назначению - они закроют трубы с одной из сторон.

Полипропиленовые уголки с резьбой подбирались прямо в магазине так, чтобы их наружный диаметр максимально подходил ко внутреннему диаметру труб. Их надо будет просто посадить на герметик.

Можно было бы использовать уголок для канализационных труб, но тогда все равно пришлось бы думать как к нему надежно подсоединить шланг подключения коллектора. А с этими водопроводными уголками я «убиваю двух тараканов одним тапком» - и вывод сделаю и разборное соединение для подключения. Вы спросите: «Почему уголки? Почему не прямой вывод?» Ну так шланги-то от пассивного солнечного коллектора будут вверх идти к теплоаккумулятору, который должен располагаться выше коллектора. Уголки, чтобы потом шланги не изгибать.

Все остальные материалы будут докупаться по мере необходимости.

Начинаем сборку коллектора. Надо сделать продольный разрез в подающей и отводящей трубе. В этот разрез будет вставлен лист сотового поликарбоната. Вода будет поступать из нижней трубы в каналы этого листа, там она будет нагреваться солнцем и под действием термосифонного эффекта подниматься вверх. Нагретая вода отводится через верхнюю трубу.

Должно получиться примерно так:

Чтобы сделать продольный разрез в трубе я использовал обычную дрель с насадкой в виде дисковой пилы. Может также использоваться углошлифовальная машинка (болгарка), но у меня ее просто не было под рукой.

Сначала я пробовал сделать пропил, удерживая трубу руками, но это оказалось практически невозможно сделать. Труба скользит в руках и постоянно дергается из-за усилий, создаваемых пилой. Я помучился минут 5, пропилив за это время всего сантиметров 10-15. Пропил получился неровный, а учитывая, что мне суммарно надо пропилить 4 метра (две трубы по 2 метра), пришлось что-то придумывать.

Зажимать тонкостенные трубы из ПВХ в тиски - это плохая идея. Поэтому был придуман и на скорую руку собран простейший зажим из двух реек и обрывков веревки.

На этой фотке также видно низкое качество пропила, полученное при удержании трубы вручную.

С этой приспособой работа пошла гораздо быстрее. Две трубы удалось пропилить минут за 5.

Качество пропила тоже получилось вполне удовлетворительным. Видно, что он гораздо ровнее, по сравнению с пропилом, который делался когда трубу держали руками.

Длина пропила должна точно соответствовать ширине рабочей части будущего солнечного коллектора. В моем случае это чуть меньше 2 метров. Начало и конец трубы должны оставаться нетронутыми, чтобы в будущем их можно было использовать для подключения или заглушить.

Что надо делать дальше, думаю, всем понятно. Надо вставить лист сотового поликарбоната в этот пропил. Но тут есть одна сложность. Из-за внутреннего напряжения в пластике пропил в трубе просто «схлопнулся» почти по всей длине. Это видно на фотке. Вставить лист в такую щель оказалось сложно. Можно было бы ее расширить, чтобы даже после этого схлопывания у нас осталась ширина 4 мм, но я решил этого не делать. Расширяя пропил мы уменьшим диаметр трубы в средней части. А если оставить все как есть, то силы внутреннего напряжения в пластике будут компенсировать небольшое давление внутри коллектора. Также благодаря этому труба будет крепче держаться за лист.

Чтобы загнать лист поликарбоната в пропил в трубе я просто разрезал конец трубы канцелярским ножом:

А потом через этот разрез просто «натянул» трубу на лист.

Далее нужно выполнить небольшую подгонку. Основная задача в том, чтобы труба оставалась прямой, а сотовый поликарбонат не заходил в трубу слишком глубоко. Вот что у меня получилось (это не свет в конце тоннеля, это свет в конце трубы)

Еще на фотках видно, что листы сотового поликарбоната с обеих сторон затянуты защитной пленкой. Я решил ее не снимать, чтобы предохранить их от повреждения и загрязнения. Сниму перед самой покраской.

Теперь приступаем к одному из самых ответственных этапов сборки солнечного коллектора. Надо герметизировать стык рабочей поверхности с трубами. Умельцы с западных сайтов используют для этого разные силиконовые герметики, но у меня, если честно, есть большие сомнения в прочности такого соединения. Мой коллектор хоть и не будет испытывать на себе давление магистрального водопровода, но все-таки мне хотелось бы быть уверенным в том, что он не протечет. Тем более, что я уже экспериментировал с разными герметиками.

В итоге, для склеивания и герметизации солнечного коллектора я выбрал термоклей. Купил клеевой термопистолет, палочки клея для пластика и вперед.

Процесс герметизации оказался на удивление прост. Правда вот расход клеевых стержней мог бы быть и поменьше. Просто я не жалел клея. Проходил по стыкам в два захода. Сначала старался загнать расплавленный термоклей в стык, чтобы он заполнил собой все щели, а вторым заходом формировал ровный наружный шов, который будет держать нагрузку. На торцах клей тоже не экономил.

Поначалу у меня были сомнения - будет ли термоклей хорошо держать соединение ПВХ с поликарбонатом. Поэтому, чтобы проверить, я сначала приклеил небольшой кусочек поликарбоната к ПВХ-трубе. Скажу вам честно - потом еле отодрал. Теперь главное мое сомнение - не будет ли термоклей размягчаться при нагревании коллектора

Следующим этапом у меня будет покраска. Для лучшего поглощения солнечной энергии я решил покрасить коллектор обычной матовой краской из баллончика.

К сожалению, этот метод не идеален. Краска ложиться неровно, остаются плохо прокрашенные участки. К тому же, одного баллончика (правда неполного) мне на 2 кв.м поверхности не хватило. В последствии пришлось докупать еще один баллончик краски. Она оказалась на базе другого растворителя, поэтому при нанесении второго слоя для плотного закрашивания, она начала коробить старую краску. Короче, результат получился не очень хороший.

Поэтому, если вы хотите избежать лишних проблем с закрашиванием солнечного коллектора, лучше в качестве материала рабочей поверхности использовать не прозрачный поликарбонат, как у меня, а черный непрозрачный сотовый полипропилен. Его не придется красить, что значительно сократит расходы.

После полного окрашивания поглощающая панель коллектора приобрела такой вот вид:

Пятна на поверхности - это следы вспучившейся краски. Вспучивание произошло из-за того, что я заливал панель краской из разных баллончиков. Одна краска была на алкидной основе, а вторая - которая с алкидной краской «не дружит». Но для процесса нагревания это вспучивание значения не имеет, поэтому я не стал его исправлять.

После окрашивания, к концам труб были тем же термоклеем приделаны уголки с резьбой.

Уголки с резьбой позволяют легко подключать и отключать коллектор при помощи гибких армированных шлангов.

После этого я решил провести серию испытаний, чтобы проверить, как коллектор будет держать давление и температуру. Пока результаты меня не очень радуют, но обо всем по порядку.

Для испытаний я просто ставил коллектор вертикально и подавал в него воду из водопровода через нижнюю трубу. Прозрачный полипропилен с обратной стороны позволяет контролировать процесс заполнения. Как только коллектор полностью заполнялся и вода начинала выливаться через верхнюю трубу, подача воды в коллектор прекращалась. Минус такого способа в том, что он создает более высокое давление воды внизу коллектора и практически нет давления вверху.

Первое заполнение коллектора водой показало, что в клеевом стыке труб и поликарбоната есть несколько протечек. Причем протечки обнаружились вверху, где давление было низкое. Отключаем панель, сливаем воду, сушим, устраняем точки протечки.

Второе подключение - ни где ничего не течет. Чтобы создать давление в районе верхней трубы я просто поднимал повыше конец отводящего гибкого шланга. Опять обнаружилась протечка. Отключаем панель, сливаем воду, сушим, устраняем точки протечки.

Третье подключение. Тут я набрался смелости и решил создать в панели повышенное давление, чтобы проверить, а вдруг он выдержит давление воды в водопроводе. Для создания давления я просто пальцем закрыл отводящую трубку. Воздух, оставшийся в коллекторе, должен был послужить амортизатором для плавного повышения давления. По мере нарастания давления, держать палец становилось все труднее, а потом клеевой шов у нижней трубы лопнул.

Выводы: слегка повышенное давление коллектор держит, но наглеть не стоит. Отключаем панель, сливаем воду, сушим, устраняем точки… нет уже не точки, а целые участки протечки.

Чтобы укрепить шов, я решил сделать его гораздо ТОЛЩЕ. Клеевым пистолетом в районе шва укладывалось большое количество термоклея, а потом все это оплавлялось и выравнивалось старым советским молотковым паяльником.

Для этой работы можно было бы использовать строительный фен, но у меня его просто не было.

После долгих мучений шов получился такой.

Некрасиво конечно, но главное чтобы держалось. Очередное испытание выявило лишь одну маленькую протечку, которая была быстро устранена. Настроение к этому моменту у меня уже было не самое радужное - оптимизм по поводу прочности швов несколько угас. Поэтому проверять панель на повышенное давление я не стал, чтобы не расстраиваться еще больше.

Не прибавило мне оптимизма также и испытание пустой панели на ярком солнце. Меньше чем за минуту коллектор нагрелся до такого состояния, что стало больно к нему прикасаться. Клей на швах на солнечной стороне также очень быстро размягчился. Понятное дело, что ни о какой прочности шва в такой ситуации речи быть не может. Если в рабочем режиме вода в коллекторе будет нагреваться до такой же высокой температуры или будет нарушена циркуляция, скорей всего швы не выдержат. Тут, видимо, надо брать какой-то более тугоплавкий термоклей.

Ну да ладно. Я на все эти неудачи махнул рукой - все таки это эксперимент. Решил довести сборку солнечного коллектора до конца. А если не получится, разберу и буду делать коллектор по другой схеме.

Под панель коллектора положил лист обычного пенопласта толщиной 5 см. А сверху все это накрыл еще одним листом прозрачного поликарбоната. Поликарбонат был немного шире, поэтому края я просто загнул и впоследствии прикрутил к пенопласту шурупами

Для изготовления рамы я использовал металлический профиль для гипсокартона. Профиль выбирал исходя из предполагаемых размеров «сандвича» солнечного коллектора. У меня профиль то ли 70х30, то ли 70х40, но как оказалось, можно было брать чуть больше, например 70х70.

В профиле самым бесцеремонным образом были вырезаны отверстия для вывода наружу точек подключения солнечного коллектора.

Немного неаккуратно, но те ножницы по металлу, которые оказались у меня под рукой, иначе сделать просто не позволяли

Сборка рамки производилась на шурупы, которые предназначены для скрепления таких металлических профилей. В результате получилось такое вот изделие.

Как видно на фото, мне пришлось дополнительно «стянуть» горизонтальные участки рамки между собой. Без этой стяжки они не хотели держать форму. Все таки для рамы был выбран слишком тонкий металлический профиль большой длины.

А вот как коллектор выглядит с обратной стороны.

На двух последних фотографиях коллектор показан на «испытательном стенде» Он был полностью заполнен водой и простоял так около часа. Протечек ни где не обнаружилось. Это обнадеживает.

Посмотрим как он покажет себя после подключения в реальных рабочих условиях.

Солнечный коллектор из поликарбоната своими руками как собрать и изготовить


Солнечный коллектор из поликарбоната своими руками как собрать и изготовить Солнечный коллектор своими руками из 14-ти метров металлопластиковой трубы стоимостью 31 руб/метр

Строим солнечный коллектор для теплицы самостоятельно

Когда солнце прячется, обычная теплица остывает. Температура снижается в конструкции резко. Солнечные теплицы конструируют таким способом, чтобы в ней обеспечивалась стабильная температура длительное время. Это достигается из-за использования специального оборудования и теплоизоляционных материалов, которые обеспечивают обогрев теплицы путем использования солнечной энергии.

Применение солнечных коллекторов помогает обогреть теплицу даже при плохих погодных условиях, когда температура окружающей среды составляет до -25°С.

Преимущества солнечных коллекторов

В виде специального варианта используется отопление теплицы солнечным коллектором. Для получения эффекта от работы коллекторов, их производят из специальных теплоизоляционных материалов. Создается надежная герметизация всех элементов системы, чтобы получить полный вакуум.

Если применять подобные обогревательные элементы, то можно произвести обогрев теплицы даже при плохих погодных условиях, когда параметры температуры окружающей среды составляют до -25°С. В подобном диапазоне температур можно проводить выращивание сельскохозяйственных культур в течение круглого года и получать высокие урожаи. Но температура снижается существенно, а также выступает за территорию рабочего диапазона.

Для решения данного вопроса применяют обогревательный тэн или тепловой насос. В итоге получается целый скомбинированный вид отопительный системы в теплице, которая почти не имеет конкурентов в этой области применения.

Направление солнечных коллекторов относится сейчас к перспективному направлению, а их стоимость постоянно снижается. Отличием солнечной энергии, которую потребляет коллектор, является экологическая чистота и бесплатность. Система способна обеспечить обогрев теплицы из поликарбоната и любой другой.

В системе отопления теплицы основной теплоноситель – это вода. Некоторые системы могут применять воздух, но получается значительно меньшая эффективность. В сравнении с водой, воздух отличается меньшей теплоемкостью.

Как своими руками создать такую теплицу

Коллектор можно сделать своими руками. Данная конструкция отличается простотой, а в виде элементов самодельного коллектора применяется медный змеевик от старых холодильников или обычные полтора литровые пластиковые бутылки.

Благодаря использованию солнечного коллектора можно значительно сэкономить материальные средства.

Можно эффективно использовать параметры самой бутылки в подобных коллекторах. Ее способность по сбору отраженных солнечных лучей позволяет создавать дополнительный теплоизоляционный слой без осуществления поворота за солнцем. Воздух, циркулирующий в бутылке, становится дополнительным изолятором, который разогревается лучами солнца. Именно поэтому в конструкции применяются бутылки, которые позволяют увеличить площадь обогреваемой поверхности трубки с теплоносителем.

Создание основной части

При изготовлении коллектора применяются такие материалы:

  1. Пластиковые бутылки.
  2. Железная бочка.
  3. Алюминиевые, медные или резиновые трубки.
  4. Деревянный брус.
  5. Шланг.
  6. Фольга.
  7. Скотч.
  8. Змеевик от старого холодильника.

Для теплоносителя подойдут трубки из разнообразных материалов: алюминий, медь, резина. Металлический вариант коллектора менее практичен из-за того, что поддается коррозии. Применение металлических трубок делает увеличение стоимости самой конструкции. Пластик использовать не рекомендуется из-за плохой теплопроводимости, подобная установка будет неэффективной.

Сборка самодельного солнечного коллектора не составит особого труда, но значительно сэкономит ваши деньги.

Из практики известно, что лучше применять при самостоятельном изготовлении коллектора только резиновый шланг для транспортировки теплоносителя. Важно, чтобы шланг имел черный цвет. В иных случаях его окрашивают обычной черной эмалью.

Приоритетней использовать матовую краску, чтобы отсутствовал эффект отражения лучей. Можно в теплоносителе использовать запчасти для старых холодильников – змеевики, по которым протекает фреон. После его демонтажа с холодильника, деталь продувается, очищается от мусора и ржавчины.

Сборка осветительного элемента

После проведения сборки, данный коллектор будет иметь вид последовательно соединенных пластиковых бутылок. Желательно использовать чистые, прозрачные и одинаковые экземпляры, а дно и горлышко требуется обрезать. С помощью бутылок составляют сплошную трубу.

Коллектор оборудуется отражателями, представляющие собой квадратики из обычной фольги.

Двухсторонний скотч используется для приклеивания фольги к нежней части бутылки. Другая половина бутылок не должна закрываться.

Для создания каркаса, где располагается коллектор, можно применить обычный брус 5 см. Используют произвольную форму каркаса, которая будет учитывать главное требование, заключающееся в устойчивости. Хомутами крепится труба с теплоносителем.

Простой аккумулятор создается из обычной железной бочки, которую нужно хорошо утеплить и герметически закупорить.

Роль конструкции теплицы

Представленный вариант по созданию самодельного коллектора не является единственным. Существуют другие разные конструкции солнечных коллекторов, которые отличаются своей стоимостью и эффективностью в работе. Любые солнечные коллекторы, которые изготавливаются самостоятельно, имеют более дешевую стоимость, чем заводские варианты.

Если профессионально подходить к выращиванию разных сельскохозяйственный культур в теплицах, то сконструированный своими руками солнечный коллектор не будет способен обеспечить необходимого температурного режима. В этом случае приобретается профессиональный коллектор. В продаже есть различные варианты по исполнению. Они имеют довольно высокую стоимость, но эффективность оправдывает потраченные средства.

Опыт показывает, что в виде изолятора теплицы можно использовать экструдированный пенополистирол. Достоинства его применения заключены в прочности, он не боится влаги и не деформируется, а при этом обеспечивает хорошую сохранность тепла.

Солнечный коллектор своими руками

Большую роль играет конструкция теплицы. Из-за работы с несимметричными конструкциями, эффективность от обогрева теплицы увеличивается на 25% в сравнении с обычными конструкциями.

Строим солнечный коллектор для теплицы самостоятельно, ДачаСадовода


Когда солнце прячется, обычная теплица остывает. Температура снижается в конструкции резко. Солнечные теплицы конструируют таким способом, чтобы в ней

Солнечный коллектор своими руками из поликарбоната

Солнечный коллектор - агрегат, производящий нагрев воды применением солнечной энергии. Для рассмотрения возьмем самый оптимальный и наиболее качественный вариант – схему солнечного коллектора из поликарбоната. Рассмотрим подробно все нюансы данного агрегата.

Солнечный коллектор состоит он из листов ячеистого поликарбоната или же полипропилена. К торцам этих листов и крепится сам коллектор. Монтируют такие листы в специальный жестяной крытый короб. В качестве крышки применяется также лист из того же материала (поликарбоната).

Также можно солнечный коллектор из поликарбоната накрыть и стеклянной крышкой, но стоит учитывать свойства поликарбоната, который, при вполне достаточной светопроницаемости, способен создать достаточный парниковый эффект, равносильный двойному остеклению. Ведь поликарбонат фактически состоит из двух слоев. К тому же, данный материал намного более прочен, чем стекло, позволяя спокойно переносить удары крупных градин. Это поможет сохранить систему в полностью рабочем состоянии даже в том случае, если наружное покрытие подвергнется деформации в процессе града.

Также немаловажно обеспечение теплоизоляции задней стенки коллектора. Оптимальным материалом для этого есть листы пенополистирола, поскольку данный материал не только достаточно легок, но и обладает весьма приемлемой ценой. При использовании полипропиленового утеплителя стоимость конструкции возрастет.

Для коллектора применяют ячеистый поликарбонат, толщины 4-25 мм. Все зависит от количества членов семьи. К примеру, для 4-х человек достаточно будет и поликарбоната 4-8 мм в толщину. Потребуется пара листов разного размера. Первый берется таких же размеров, что и короб. Второй же лист поликарбоната для солнечного коллектора должен входить внутрь короба, имея при этом зазоры необходимой ширины, поэтому он несколько меньше.

Материалы, необходимые для монтажа коллектора:

  • Водопроводная поливинилхлоридная труба, диаметром 3,2 см и длиной 1,5 метра - 2 штуки;
  • Заглушки для труб указанного выше типа – 2 шт;
  • Фиттинговые уголки из полипропилена с металлической резьбой - 2 штуки;
  • Шланги с резьбовым соединением .

Начинаем сборку коллектора из поликарбоната

Вначале, в обоих видах труб проделываются продольные разрезы, в которые впоследствии вставляется поликарбонатный ячеистый лист. Подаваемая снизу вода поступает в желобки листа, где прогревается и за счет эффекта термического сифона поднимается к верхней трубе, откуда отводится к накопителю.

Концы трубы остаются нетронутыми, чтобы в дальнейшем была возможность подключить или заглушить их. Разрез в трубе берется тех же размеров, что и ширина коллекторной части.

При вставке поликарбонатного листа в пропил есть небольшой нюанс. За счет внутреннего напряжения пластика, пропил сходится. Поэтому вставку необходимо производить осторожно, следя за тем, чтобы лист не вошел в трубу, слишком глубоко - это будет мешать нормальной циркуляции воды. Расширять пропил не стоит, поскольку за счет его напряжения труба крепче держится за поликарбонатный лист и происходит компенсация внутрилистового давления. Небольшая подгонка, конечно же, допустима.

Для улучшения сцепления поверхностей с герметиком, края листа поликарбоната обрабатывается наждачной бумагой перед вставкой в трубу. Также нужно обезжирить место будущего стыка.

Следующим этапом производится герметизация стыков трубы с рабочей поверхностью коллектора. Этап этот достаточно важен, поэтому на герметике экономить не стоит. Простой силиконовый не достаточно хорош.

Для большего уровня поглощения солнечного тепла, поверхность солнечного коллектора из поликарбоната необходимо покрасить. Кстати, для обустройства рабочей поверхности лучше применять матовый черный полипропилен. Это поможет лишний раз не отвлекаться на возможные сложности в работах по окрашиванию, да и заодно сэкономит Ваши средства.

По завершении покраски, приходит черед уголков с металлической резьбой. Они закрепляются на концах труб при помощи термоклея. Данное дополнение, как и гибкие шланги с армировкой, значительно облегчит процесс подключения и отключения коллектора.

Устанавливаем солнечный коллектор в короб

В первую очередь производится монтаж листа пенополистирола на заднюю стенку каркаса, для чего чаще всего применяется монтажная пена, или же банально – клей. Дальше – монтаж коллектора. Применяя хомуты из металла, или же пластика, закрепляем коллектор как можно плотнее к пенопласту, производя крепление с максимальным качеством. Финальным этапом идет монтаж поликарбоната с лицевой стороны. Производится крепление с применением саморезов.

Стандартная схема работы системы с солнечным коллектором

На чердак строения устанавливается объемный (160 литров) накопительный бак, утепленный минеральной ватой. Он соединяется с системой подачи горячей воды (отбор горячей воды). Подача горячей воды из бака производится без дополнительного давления, самотеком, для подачи же холодной устанавливается насос, подающий воду из колодца/скважины.

Монтируют солнечный коллектор из поликарбоната таким образом, чтобы верх коллектора не был выше накопительного бака, что позволяет воде циркулировать естественным путем. Горячая будет подниматься в бак, заменяясь холодной. Для этого также трубку, по которой подается горячая вода, крепят чуть выше середины накопителя, что помогает накапливать горячую воду вверху бака.

Еще практикуется установка двух или нескольких установок с солнечными коллекторами из поликарбоната по разным сторонам крыши, что помогает увеличить количество горячей воды, поступающей в бак, а также стабильность ее нагревания.

Солнечный коллектор из поликарбоната, Строй Быт


Солнечный коллектор своими руками из поликарбоната Солнечный коллектор - агрегат, производящий нагрев воды применением солнечной энергии. Для рассмотрения возьмем самый оптимальный и