Расчет зон поражения избыточным давлением взрыва. Расчет последствий взрыва внутри технологического оборудования. Оценка параметров ударной волны при взрыве газовоздушных смесей

Введение

химический чрезвычайный пожар взрыв

Индустриализация современного общества, усложнение технологических процессов производства неизбежно ведут к появлению негативных явлений, связанных с возникновением чрезвычайных ситуаций. Продолжают наносить огромный ущерб, опасные природные явления и стихийные бедствия метеорологического, гидрологического и геофизического происхождения. Разрушение зданий, сооружений, промышленных объектов гибель людей и материальных ценностей имеют место не только во время войны, но и в мирное время в результате стихийных бедствий, производственных аварий и катастроф.

В связи с этим, важное социальное и экономическое значение имеет работа, направленная на провидение мероприятий по прогнозированию предупреждению чрезвычайных ситуаций. Знание руководителями и специалистами ОНХ, личным составом НВФ и всем населением основных характеристик стихийных бедствий, аварий, катастроф, современных средств нападения и их поражающих факторов, умение организовать защиту людей, продовольствия, водоисточников и техники считается важнейшим и необходимым условием деятельности каждого из них в современных условиях, гарантией высокой готовности объекта народного хозяйства к действиям в экстремальной ситуации.

Федеральный закон о защите населения и территорий от черезвычайных ситуаций природного и техногенного характера определяет общие для Российской Федерации организационно-правовые нормы в области защиты граждан Российской Федерации, иностранных граждан и лиц без гражданства, находящихся на территории Российской Федерации (далее - население), всего земельного, водного, воздушного пространства в пределах Российской Федерации или его части, объектов производственного и социального назначения, а также окружающей среды (далее - территории) от чрезвычайных ситуаций природного и техногенного характера (далее - чрезвычайные ситуации).

Действие настоящего Федерального закона распространяется на отношения, возникающие в процессе деятельности органов государственной власти Российской Федерации, органов государственной власти субъектов Российской Федерации, органов местного самоуправления, а также предприятий, учреждений и организаций независимо от их организационно-правовой формы (далее - организации) и населения в области защиты населения и территорий от чрезвычайных ситуаций.


1. Основные понятия


Чрезвычайная ситуация - это обстановка на определенной территории, сложившаяся в результате аварии, опасного природного явления, катастрофы, стихийного или иного бедствия, которые могут повлечь или повлекли за собой человеческие жертвы, ущерб здоровью людей или окружающей среде, значительные материальные потери и нарушение условий жизнедеятельности людей. (в ред. Федерального закона от 30.12.2008 №309-ФЗ)

Предупреждение чрезвычайных ситуаций - это комплекс мероприятий, проводимых заблаговременно и направленных на максимально возможное уменьшение риска возникновения чрезвычайных ситуаций, а также на сохранение здоровья людей, снижение размеров ущерба окружающей среде и материальных потерь в случае их возникновения. (в ред. Федерального закона от 30.12.2008 №309-ФЗ)

Ликвидация чрезвычайных ситуаций - это аварийно-спасательные и другие неотложные работы, проводимые при возникновении чрезвычайных ситуаций и направленные на спасение жизни и сохранение здоровья людей, снижение размеров ущерба окружающей среде и материальных потерь, а также на локализацию зон чрезвычайных ситуаций, прекращение действия характерных для них опасных факторов. (в ред. Федерального закона от 30.12.2008 №309-ФЗ)

Зона чрезвычайной ситуации - это территория, на которой сложилась чрезвычайная ситуация.

Статья 4. Единая государственная система предупреждения и ликвидации чрезвычайных ситуаций

(в ред. Федерального закона от 04.12.2006 №206-ФЗ)

Единая государственная система предупреждения и ликвидации чрезвычайных ситуаций объединяет органы управления, силы и средства федеральных органов исполнительной власти, органов исполнительной власти субъектов Российской Федерации, органов местного самоуправления, организаций, в полномочия которых входит решение вопросов по защите населения и территорий от чрезвычайных ситуаций, в том числе по обеспечению безопасности людей на водных объектах. (в ред. Федерального закона от 19.05.2010 №91-ФЗ)

Основными задачами единой государственной системы предупреждения и ликвидации чрезвычайных ситуаций являются, в том числе по обеспечению безопасности людей на водных объектах: (в ред. Федерального закона от 19.05.2010 №91-ФЗ)

разработка и реализация правовых и экономических норм по обеспечению защиты населения и территорий от чрезвычайных ситуаций;

осуществление целевых и научно-технических программ, направленных на предупреждение чрезвычайных ситуаций и повышение устойчивости функционирования организаций, а также объектов социального назначения в чрезвычайных ситуациях;

обеспечение готовности к действиям органов управления, сил и средств, предназначенных и выделяемых для предупреждения и ликвидации чрезвычайных ситуаций;

сбор, обработка, обмен и выдача информации в области защиты населения и территорий от чрезвычайных ситуаций, в том числе организация разъяснительной и профилактической работы среди населения в целях предупреждения возникновения чрезвычайных ситуаций на водных объектах; (в ред. Федерального закона от 19.05.2010 №91-ФЗ)

подготовка населения к действиям в чрезвычайных ситуациях;

организация оповещения населения о чрезвычайных ситуациях и информирования населения о чрезвычайных ситуациях, в том числе экстренного оповещения населения; (в ред. Федерального закона от 02.07.2013 №158-ФЗ)

прогнозирование и оценка социально-экономических последствий чрезвычайных ситуаций;

создание резервов финансовых и материальных ресурсов для ликвидации чрезвычайных ситуаций;

осуществление государственной экспертизы, государственного надзора в области защиты населения и территорий от чрезвычайных ситуаций; (в ред. Федерального закона от 14.10.2014 №307-ФЗ)

ликвидация чрезвычайных ситуаций;

осуществление мероприятий по социальной защите населения, пострадавшего от чрезвычайных ситуаций, проведение гуманитарных акций;

реализация прав и обязанностей населения в области защиты от чрезвычайных ситуаций, а также лиц, непосредственно участвующих в их ликвидации, в том числе обеспечения безопасности людей на водных объектах; (в ред. Федерального закона от 19.05.2010 №91-ФЗ)

международное сотрудничество в области защиты населения и территорий от чрезвычайных ситуаций.

Принципы построения, состав сил и средств, порядок выполнения задач и взаимодействия основных элементов, а также иные вопросы функционирования единой государственной системы предупреждения и ликвидации чрезвычайных ситуаций определяются законодательством Российской Федерации, постановлениями и распоряжениями Правительства Российской Федерации.


2. Расчет зоны ЧС


.1 Оценка химической обстановки при ЧС


Задание

На химическом предприятии произошла авария на технологическом трубопроводе с жидким хлором, находящимся под давлением. Количество вытекшей из трубопровода жидкости не установлено. Известно, что в технологической системе содержалось 59 т сжиженного хлора. Требуется определить глубину зоны возможного заражения хлором при времени от начала аварии 1 ч и продолжительность действия источника заражения (время испарения хлора). Метеоусловия на момент аварии: скорость ветра 3 м/с, температура воздуха 0°С, инверсия. Разлив АХОВ на подстилающей поверхности - свободный.

Методика оценки

1. Эквивалентное количество АХОВ, перешедшее в первичное облако, по формуле



Где -эквивалентное количество АХОВ в первичном облаке, Т; -количество выброшенного (разлившегося) при аварии АХОВ, т; -коэффициент, та висящий от условий хранении АХОВ (); -коэффициент, равный отношению пороговой токеодоэм хлора к пороговой токсодоэе АХОВ (); - коэффициент, учитывающий степень вертикальной устойчивости воздуха и равный: 1-для инверсии; - коэффициент, учитывающий влияние температуры воздуха на скорость образования первичного облака ().


.Эквивалентное количество АХОВ, перешедшее во вторичное облако, по формуле



где - количество АХОВ во вторичном облаке, т; - коэффициент, зависящий от физико-химических свойств АХОВ (; - коэффициент, учитывающий скорость ветра (=1,67); - коэффициент, зависящий от времени, прошедшего после начала аварии N (N?T),


где Т - продолжительность поражающего действия АХОВ (время испарения АХОВ с площади разлива), ч, определяется из уравнения:


Так как Т<1 часа, принимаем для 1 часа, т.е.

коэффициент, учитывающий влияние температуры окружающего воздуха па скоростьобразования вторичного облака.


3. Глубина распространения первичного () и вторичного () облаков АХОВ. =6,07 км;=21,514 км

Общая глубина распространения зараженного воздуха вычисляется по формуле


где - общая глубина распространения облака зараженного АХОВ воздуха, км; - большее из двух значенийи, км; - меньшее из двух значений и, км.


4. Общую глубину распространения облака зараженного воздуха сравнивают с возможным предельным значением глубины переноса воздушных масс (), определяемой из уравнения


где V - скорость переноса переднего фронта облака зараженного воздуха (); N - время от начала аварии, ч.

Из двух значений выбирают наименьшее, соблюдая условие



где Г - глубина зоны возможного заражения АХОВ, км.


Площадь зоны возможного заражения АХОВ ()



где - угловые размеры зоны возможного заражения АХОВ, град.


Площадь зоны фактического заражения АХОВ ()



Где-коэффициент, который зависит от степени вертикальной устойчивости воздуха и принимается равным: 0,081 - для инверсии.


Время подхода облака зараженного воздуха к заданному объекту:


Прогнозирование масштабов заражения АХОВ

В результате аварии в зону возможного заражения АХОВ (100,45) попадают населенные пункты Вишневка, Грабово, Заречье; АЗС; участок реки Белая; лесополоса.


.2 Воздействие на организм человека хлора


Хлор - газ желто-зеленого цвета, с резким запахом (запах хлорной извести), в 2,5 раза тяжелее воздуха, поэтому при утечках хлор прежде всего заполняет овраги, подвалы, первые этажи зданий, стелется по полу. Газообразный хлор и химические соединения, содержащие хлор в активной форме, опасны для здоровья человека (токсичны).

При вдыхании этого газа возможно острое и хроническое отравления. Клинические формы зависят от концентрации хлора в воздухе и продолжительности экспозиции. Различают четыре формы острого отравления хлором: молниеносная, тяжелая, средней тяжести и легкая.

Для всех этих форм типична резкая первичная реакция на воздействие газа. Неспецифическое раздражение хлором рецепторов слизистой оболочки дыхательных путей вызывает рефлекторные защитные симптомы (кашель, першение в горле, слезотечение и др.). В результате взаимодействия хлора с влагой слизистой оболочки дыхательных путей образуется соляная кислота и активный кислород, которые и оказывают токсическое действие на организм.

При высоких концентрациях хлора пострадавший может погибнуть через несколько минут (молниеносная форма): возникает стойкий ларингоспазм (сужение голосовой щели, ведущее к остановке дыхания), потеря сознания, судороги, цианоз, вздутие вен на лице и шее, непроизвольное мочеиспускание и дефекация.

При тяжелой форме отравления возникает кратковременная остановка дыхания, затем дыхание восстанавливается, но уже не нормальное, а поверхностное, судорожное. Человек теряет сознание. Смерть наступает в течение 5-25 минут.

При отравлении хлором средней тяжести сознание у пострадавших сохраняется; рефлекторная остановка дыхания непродолжительна, но в течение первых двух часов могут повторяться приступы удушья. Отмечается жжение и резь в глазах, слезотечение, боль за грудиной, приступы мучительного сухого кашля, а через 2-4 часа развивается токсический отек легких. При легкой форме острого отравления хлором выражены только признаки раздражения верхних дыхательных путей, которые сохраняются в течение нескольких суток.

Отдаленные последствия перенесенного острого отравления хлором проявляются как хронический фарингит, ларингит, трахеит, трахеобронхит, пневмосклероз, эмфизема легких, бронхо-эктатическая болезнь, легочно-сердечная недостаточность. Такие же изменения в организме возникают при длительном пребывании в условиях, когда в воздухе постоянно содержится газообразный хлор в малых концентрациях (хроническое отравление хлором). Воздействие на незащищенную кожу хлорсодержащих соединений вызывает хлорные угри, дерматит, пиодермию.

Первая помощь пострадавшим включает в себя:

промывание глаз, носа, рта 2% раствором питьевой соды;

закапывание в глаза вазелинового или оливкового масла, а при болях в глазах - по 2-3 капли 0,5% раствора дикаина;

наложение глазной мази для профилактики инфекции (0,5% синтомициновая, 10% сульфациловая) или по 2-3 капли 30% альбуцида, 0,1% раствора сульфата цинка и 1% раствора борной кислоты - 2 раза в день;

введение гидрокортизона 125 мг в/м, преднизолона 60 мг в/в или в/м.

Необходимо как можно более раннее лечение и госпитализация пострадавших.


3. Расчет зоны ЧС


.1 Расчет зон ЧС при взрыве топливно-воздушных смесей (ТВС)


Задание

На территории ОЭ хранится бензин массой М =55 т Хранениегрупповое. Удельная теплота сгорания бензина =1800. Сделать расчет возможных последствий аварии.

По результатам выполненного расчета на генеральный план предприятия (прил. 9) в масштабе наносим зоны разрушений при взрыве ТВС с указанием радиусов этих зон и величины избыточного давления в этих зонах.

Методика расчета

Характерными особенностями взрывов ТВС являются: I возникновение разных типов взрывов: детонационного, дефлаграционного или комбинированного;

при взрывах образуется 5 зон поражения: бризантная (детонационная), действия продуктов взрыва (огненного шара), действия ударной волны, теплового поражения и токсического задымления;

зависимость мощности взрыва от параметров среды, в которой происходит взрыв (температура, скорость ветра, плотность застройки, рельеф местности);

для реализации комбинированного или детонационного взрыва для ТВС обязательным условием является создание концентрации продукта в воздухе в пределах нижнего и верхнего концентрационного предела.

Дефлаграция - взрывное горение с дозвуковой скоростью.

Детонация - процесс взрывчатого превращения вещества со сверхзвуковой скоростью.

Расчет радиусов зон поражения (R) и избыточного давления во фронте ударной волны () при взрыве производится по следующим формулам:

1. Бризантная зона (зона детонации):


где М - масса ТВС в резервуаре (кг). За М принимается 90% - при групповом хранения.


Для бризантной зоны.

2. Зона продуктов горения (зона огненного шара):

Радиус зоны:


Избыточное давление во фронте ударной волны рассчитывается:


Для остальных зон их радиусы рассчитываются по следующей формуле:



Зона действия ударной волны:

) Слабые разрушения - повреждения или разрушения крыт и оконных и дверных проемов. Ущерб - 10… 15% от стоимости зданий. .


Тепловой импульс () определяется по формуле:


где I-интенсивность теплового излучения взрыва ТВС на расстоянии R,


Где - удельная теплота пожара,; F - угловой коэффициент, характеризующий взаимное расположение источника горения и объекта


прозрачность воздуха


Продолжительность существования огненного шара(с)


) Средние разрушения -разрушение крыш, окон, перегородок, чердачных перекрытий, верхних этажей. Ущерб - 30… 40%.


) Сильные разрушения - разрушения несущих конструкций и перекрытий. Ущерб - 50%. Ремонт нецелесообразен..


) Полное разрушение -обрушение зданий..


В результате взрыва на складе бензина:

) слабым разрушениям подвергнуться магазин 7, столовая 4, бытовой корпус 9, гараж 2, насосная 5, эл. мех. мастерская 6, пожарное депо 3, мед. пункт 8, электрофильтр 16, электроподстанции 16 и10, отдел сырьевых мельниц 11, сырьевое отделение 12, склад сырья 13, котельная 14. В этой зоне произойдут повреждения или разрушения крыш и оконных и дверных проемов. Ущерб 10-15% от стоимости зданий.

) Средним разрушениям подвергнуться сырьевое отделение 22, моторное отделение 23, отдел цементных мельниц 24, печное отделение 21, эл. подстанция 17, компрессорная 18, резервуар гор. воды 20. В этой зоне произойдут разрушения крыш, окон, перегородок, чердачных перекрытий, верхних этажей. Ущерб 30-40%.

) Сильным разрушениям подвергнуться часть цементных силосов 42, эл. подстанция 27, насосная гор. воды 19, часть клинкерного склада 32. В этой зоне произойдут разрушения несущих конструкций и перекрытий. Ущерб 50%. Ремонт нецелесообразен.

) Полным разрушениям подвергнуться склад бензина 38, резервуар воды 30, брызговой бассейн 36, насосная 35, мех. мастерская 29, склад огнеупоров 37, упаковочная 39, моторное отделение 33, эл. подстанция 34, отдел цем. мельниц 31, мастер. склад 28, паровозное депо 40, часть клинкерного склада 25.в этой зоне произойдут полные разрушения зданий и сооружений.


.2 Основные поражающие факторы пожара и взрыва


Основные поражающие факторы пожара: непосредственное воздействие огня (горение); высокая температура и теплоизлучение; газовая среда; задымление и загазованность помещений и территории токсичными продуктами горения. На людей, находящихся в зоне горения, воздействуют, как правило, одновременно несколько факторов: открытый огонь и искры, повышенная температура окружающей среды, токсичные продукты горения, дым, пониженная концентрация кислорода, падающие части строительных конструкций, агрегатов и установок.

Открытый огонь очень опасен, но случаи его непосредственного воздействия на людей редки. Чаще они страдают от лучистых потоков, испускаемых пламенем. Установлено, что при пожаре в сценической коробке зрелищного предприятия лучистые потоки опасны для зрителей первых рядов партера уже через полминуты после возгорания.

Температура среды . Наибольшую опасность Для людей представляет вдыхание нагретого воздуха, приводящее к поражению верхних дыхательных путей, Удушью и смерти. Так, воздействие температуры выше 100°С приводит к потере сознания и гибели через несколько минут. Опасны также ожоги кожи.

Несмотря ва большие успехи медицины в их лечении, у человека, получившего ожоги второй степени на 30% поверхности тела, мало шансов выжить.

Токсичные продукты горения. При пожарах в современных зданиях, построенных с применением полимерных и синтетических материалов, на человека могут воздействовать токсичные продукты горения. Наиболее опасен из них оксид углерода. Он в 200 - 300 раз лучше вступает в реакцию с гемоглобином крови, чем кислород, вследствие чего у человека наступает кислородное голодание. Он становится равнодушным и безучастным к опасности, у него наступают оцепенение, головокружение, депрессия, нарушается координация движений, а затем происходят остановка дыхания и смерть.

Потеря видимости вследствие задымления . Успех эвакуации людей при пожаре может быть обеспечен лишь при их беспрепятственном движении в нужном направлении. Эвакуируемые обязательно должны четко видеть эвакуационные выходы или указатели выходов. При потере видимости движение людей становится хаотичным, каждый человек движется в произвольно выбранном направлении. В результате этого процесс эвакуации затрудняется, а затем может стать неуправляемым.

Пониженная концентрация кислорода. В условиях пожара при сгорании веществ и материалов концентрация кислорода в воздухе уменьшается. Между тем понижение ее даже на 3% вызывает ухудшение двигательных функций организма. Опасной считается концентрация кислорода меньше 14%: при ней нарушаются мозговая деятельность и координация движений.

Пожары нередко являются причиной возникновения вторичных факторов поражения, не уступающих иногда по силе и опасности воздействия самому пожару. К ним можно отнести взрывынефте- и газопроводов, резервуаров с горючими веществами и аварийно химически опасными веществами, обрушение элементов строительных конструкций, замыкание электрических сетей.

"Основные поражающие факторы взрыва" : ударная волна, представляющая собой область сильно сжатого воздуха, распространяющегося во все стороны от центра взрыва со сверхзвуковой скоростью; осколочные поля, создаваемые летящими обломками строительных конструкций, оборудования, взрывных устройств, боеприпасов.

Вторичными поражающими факторам и взрывов могут быть воздействие осколков стекол и обломков разрушенных зданий и сооружений, пожары, заражение атмосферы и местности, затопление, а также последующие разрушения (обрушения) зданий и сооружений.

Продукты взрыва и образовавшаяся в результате их действия воздушная ударная волна способны наносить человеку различные по тяжести травмы, в том числе смертельные.

В зонах I и II действия взрыва происходит полное поражение людей: разрыв на части, обугливание под действием расширяющихся продуктов взрыва, имеющих очень высокую температуру.

В зоне III поражение людей вызывается и непосредственным, и косвенным воздействием ударной волны. При ее непосредственном воздействии основной причиной появления у людей травм служит мгновенное повышение давления воздуха, что воспринимается человеком как резкий удар. При этом возможны повреждения внутренних органов, разрыв кровеносных сосудов, барабанных перепонок, сотрясение мозга, переломы и травмы. Кроме того, ударная волна может отбросить человека на значительное расстояние и причинить ему при ударе о землю (или препятствие) различные повреждения.

Наиболее тяжелые повреждения получают люди, находящиеся в момент прихода ударной волны вне укрытий в положении стоя.

Поражения, возникающие под воздействием ударной волны, подразделяют на легкие, средние, тяжелые и крайне тяжелые (смертельные). Характеристики поражений приведены в табл. 2.

Поражение людей, находящихся в момент взрыва в зданиях и сооружениях, зависит от степени их разрушения. Так, например, при полном разрушении здания обычно погибают все находящиеся в нем люди. При сильных и средних разрушениях может выжить примерно половина людей, а остальные получают травмы различной тяжести, так как многие могут оказаться под обломками конструкций, а также в помещениях с заваленными и разрушенными путями эвакуации.

Косвенное воздействие ударной волны заключается в поражении людей летящими обломками зданий и сооружений, камнями, битым стеклом и другими предметами, увлекаемыми ею.

При слабых разрушениях зданий гибель людей маловероятна. Однако некоторые из них могут получить травмы различной тяжести.


Заключение


При различных ЧС, зоны поражения и последствия зависят от источника возникновения. В моем РГЗ я рассмотрел 2 чрезвычайные ситуации техногенного характера разного типа аварий. Первая авария с выбросом аварийно-химически опасного вещества - хлора, с большой зоной поражения и опасным воздействием на человека и окружающую среду. Вторая представляет собой аварию на взрыво-пожароопасном объекте - складе легковоспламеняющихся, горючих материалов. В результате аварии в зону поражения попадает цементный завод, прилегающая территория и люди, работающие на нем.

Способом защиты от ЧС является совокупность взаимоувязанных по времени, ресурсам и месту проведения мероприятийРСЧС, направленных на предотвращение или предельное снижение потерь населения и угрозы его жизни и здоровью от поражающих факторов и воздействий источников чрезвычайных ситуаций.

Необходимость подготовки и осуществления мероприятий по защите населения от чрезвычайных ситуаций природного и техногенного характера обусловливается:

§риском для человека подвергнуться воздействию поражающих факторов стихийных бедствий, аварий, природных и техногенных катастроф;

§предоставленным законодательством правом людей на защиту жизни, здоровья и личного имущества в случае возникновения чрезвычайных ситуаций.

Мероприятия защиты населения являются составной частью предупредительных мер и мер по ликвидации чрезвычайных ситуаций и, следовательно, выполняются как в превентивном (предупредительном), так и оперативном порядке с учетом возможных опасностей и угроз. При этом учитываются особенности расселения людей, природно-климатические и другие местные условия, а также экономические возможности по подготовке и реализации защитных мероприятий.

Мероприятия по подготовке страны к защите населения проводятся по территориально-производственному принципу. Они осуществляются не только в связи с возможными чрезвычайными ситуациями природного и техногенного характера, но и в предвидении опасностей, возникающих при ведении военных действий или вследствие их, поскольку значительная часть этих мероприятий эффективна как в мирное, так и военное время.

Меры по защите населения от чрезвычайных ситуаций осуществляются силами и средствами предприятий, учреждений, организаций, органов исполнительной власти субъектов Российской Федерации, на территории которых возможна или сложилась чрезвычайная ситуация.

Комплекс мероприятий по защите населения включает:

§оповещение населения об опасности, его информирование о порядке действий в сложившихся чрезвычайных условиях;

§эвакуационные мероприятия;

§меры по инженерной защите населения;

§меры радиационной и химической защиты;

§медицинские мероприятия;

§подготовку населения в области защиты от чрезвычайных ситуаций.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

ПРИКАЗ от 11 марта 2013 года N 96 Об утверждении Федеральных норм и правил в области промышленной безопасности Общие правила взрывобезопасности для взрывопожароопасных химических, нефтехимических и нефтеперерабатывающих производств

Приложение N 3

к Федеральным нормам и правилам

в области промышленной безопасности

"Общие правила взрывобезопасности для

взрывопожароопасных химических,

нефтехимических и нефтеперерабатывающих

производств", утверждённым приказом

Федеральной службы по экологическому,

технологическому и атомному надзору

Расчет участвующей во взрыве массы вещества и радиусов зон разрушений

В целях обоснования безопасного размещения установок, зданий, сооружений на территории взрывопожароопасного производственного объекта в общем случае следует проанализировать риск взрыва топливно-воздушных смесей (далее - ТВС), образующихся при аварийном выбросе опасных (горючих, воспламеняющихся) веществ. Риск взрыва является мерой опасности, характеризующая возможность и тяжесть последствий взрыва. Оценка риска взрыва является частью анализа риска аварии.

Расчет зон поражения, разрушения (последствий взрыва) необходимо применять при выборе технических мероприятий по защите объектов и персонала от ударно-волнового воздействия взрыва парогазовых сред, а также твердых и жидких химически нестабильных соединений (перекисные соединения, ацетилениды, нитросоединения различных классов, продукты осмоления, трихлористый азот), способных взрываться.

Расчеты размеров зон поражения следует проводить по одной из двух методик:

1) методика оценки зон поражения, основанная на "тротиловом эквиваленте" взрыва ТВС;

2) методика, учитывающая тип взрывного превращения (детонация/дефлаграция) при воспламенении ТВС.

1. Методика расчета "тротилового эквивалента" дает ориентировочные значения участвующей во взрыве массы вещества без учета дрейфа облака ТВС. В данной методике приняты следующие условия и допущения.

1.1. В расчетах принимаются общие приведенные массы парогазовых сред m и соответствующие им энергетические потенциалы E, полученные при определении категории взрывоопасности технологических блоков согласно приложению N 2 к настоящим Правилам.

Для конкретных реальных условий значения m и E могут определяться другими методами с учетом эффекта диспергирования горючей жидкости в атмосфере под воздействием внутренней и внешней энергий, характера раскрытия технологической системы, скорости истечения горючего продукта в атмосферу и других возможных факторов.

Масса твердых и жидких химически нестабильных соединений Wx определяется по их содержанию в технологической системе, блоке, аппарате.

1.2. Масса парогазовых веществ, участвующих во взрыве, определяется произведением

где z- доля приведенной массы парогазовых веществ, участвующих во взрыве.

В общем случае для неорганизованных парогазовых облаков в незамкнутом пространстве с большой массой горючих веществ доля участия во взрыве может приниматься равной 0,1. В отдельных обоснованных случаях доля участия веществ во взрыве может быть снижена, но не менее чем до 0,02.

Для производственных помещений (зданий) и других замкнутых объемов значения z могут приниматься в соответствии с таблицей N 1.

Таблица N 1

Значение z для замкнутых объемов (помещений)

1.3. Источники воспламенения могут быть постоянные (печи, факелы, невзрывозащищенная электроаппаратура) или случайные (временные огневые работы, транспортные средства), которые могут привести к взрыву парогазового облака при его распространении.

1.4. Для оценки уровня воздействия взрыва может применяться тротиловый эквивалент. Тротиловый эквивалент взрыва парогазовой среды WT (кг), определяемый по условиям адекватности характера и степени разрушения при взрывах парогазовых облаков, а также твердых и жидких химически нестабильных соединений рассчитывается по формулам:

1.4.1. Для парогазовых сред

где 0,4 - доля энергии взрыва парогазовой среды, затрачиваемая непосредственно на формирование ударной волны;

0,9 - доля энергии взрыва тринитротолуола (ТНТ), затрачиваемая непосредственно на формирование ударной волны;

q" - удельная теплота сгорания парогазовой среды, кДж/кг;

qk - удельная энергия взрыва ТНТ, кДж/кг.

1.4.2. Для твердых и жидких химически нестабильных соединений

где Wk - масса твердых и жидких химически нестабильных соединений;

q k- удельная энергия взрыва твердых и жидких химически нестабильных соединений.

1.5. Зоной разрушения считается площадь с границами, определяемыми радиусами R , центром которой является рассматриваемый технологический блок или наиболее вероятное место разгерметизации технологической системы. Границы каждой зоны характеризуются значениями избыточных давлений по фронту ударной волны ΔP и соответственно безразмерным коэффициентом K .

Классификация зон разрушения приводится в таблице N 2.

Таблица N 2

Классификация зон разрушения

1.5.1. Радиус зоны разрушения (м) в общем виде определяется выражением:

где K - безразмерный коэффициент, характеризующий воздействие взрыва на объект.

При массе паров m более 5000 кг радиус зоны разрушения может определяться выражением:

1.5.2. Для выполнения практических инженерных расчетов радиусы зон разрушения могут определяться выражением

где при m < 5000 кг

или при m > 5000 кг

2. Методика, учитывающая тип взрывного превращения (детонация/дефлаграция) при воспламенении ТВС.

2.1. Для более точных расчетов зон разрушения и оценки риска взрыва рекомендуется использовать следующие соотношения.

Масса вещества, способного участвовать во взрыве, определяется путем интегрирования концентрации выброшенного при аварии горючего вещества по пространству, ограниченному поверхностями Σ вкпр и ∑ нкпр по формуле:

где х, у, z - пространственные переменные, ΣВКПР и Σ НКПР - поверхности в пространстве достижения соответственно верхнего и нижнего концентрационных пределов, c (x, y, z, t0) - распределение концентрации в момент времени t0, кг/м3; t0- момент времени воспламенения или момент времени, когда во взрывоопасных пределах находится максимальное количество топлива, с.

Рассчитываются основные параметры воздушных ударных волн (избыточное давление ΔP и импульс волны давления I) в зависимости от расстояния до центра облака (в том числе с учетом возможного дрейфа облака ТВС).

Для вычисления параметров воздушной ударной волны на заданном расстоянии R от центра облака при детонации облака ТВС предварительно рассчитывается соответствующее безразмерное расстояние по соотношению:

где E - эффективный энергозапас ТВС, Дж (E = m·q, где q - теплота сгорания топлива в облаке).

В случае детонации облака газовой ТВС расчет производится по следующим формулам:

Зависимости (13) и (14) справедливы для значений Rx больших величины Rk=0,25. В случае если Rxk , величина Px полагается равной 18, а величина Ix=0,16.

В случае дефлаграционного взрывного превращения облака ТВС к параметрам, влияющим на величины избыточного давления и импульса положительной фазы, добавляются скорость видимого фронта пламени Vr и степень расширения продуктов сгорания σ. Для газовых смесей принимается σ=7, для гетерогенных - σ=4. Для расчета параметров ударной волны при дефлаграции гетерогенных облаков величина эффективного энергозапаса смеси домножается на коэффициент (σ-1)/σ. Величина Vr определяется исходя из взрывоопасных свойств горючего вещества и загроможденности окружающего пространства, влияющего на турбулизацию фронта пламени.

Безразмерные давление P x1 и импульс фазы сжатия I x1 определяются по соотношениям:

Px1=((0,83/Rx-0,14/R2x);

Ix1=(V2/C0)2((σ-1/σ)(1-0,4(σ-1)V2/σC0)x(0,06/Rx+0,01/R2x-0,0025/R3x).

Последние два выражения справедливы для значений Rx, больших величины Rкр= 0,34, в противном случае вместо Rx в соотношения (15) и (16) подставляется величина R кр.

Далее вычисляются величины Px2 и Ix2 , которые соответствуют режиму детонации и для случая детонации газовой смеси рассчитываются по соотношениям (11), (12), а для детонации гетерогенной смеси - по соотношениям (13), (14). Окончательные значения Px и Ix выбираются из условий:

Px= min (Px1 , Px2) : Ix =min (Ix1, Ix2) (17)

После определения безразмерных величин давления и импульса фазы сжатия вычисляются соответствующие им размерные величины:

I=Ix (P0)2/3E1/3/C0 (19)

2.2. Для расчета условной вероятности разрушения объектов и поражения людей ударными волнами используется пробит-функция, значение которой определяется следующим образом:

а) вероятность повреждений стен промышленных зданий, при которых возможно восстановление зданий без их сноса, может оцениваться по соотношению:

Δ P- избыточное давление, Па;

I - импульс, кг·м/с;

б) вероятность разрушений промышленных зданий, при которых здания подлежат сносу, оценивается по соотношению.

Pr2=5-0,22 .lnV2 (21)

При взрывах ТВС внутри резервуаров и другого оборудования, содержащего газ под давлением, в общем случае следует учитывать опасность разлета осколков и последующее развитие аварии, сопровождаемое "эффектом домино" с распространением аварии на соседнее оборудование, если оно содержит опасные вещества.

в) вероятность длительной потери управляемости у людей (состояние нокдауна), попавших в зону действия ударной волны при взрыве облака ТВС, может быть оценена по величине пробит-функции:

Pr3= 5-5.74·InV3 (22)

Вероятность отброса людей волной давления оценивается по величине пробит-функции:

При использовании пробит-функции в качестве зон 100-процентного поражения принимаются зоны поражения, где значение пробит-функции достигают величины, соответствующей вероятности 90 процентов. В качестве зон безопасных с точки зрения воздействия поражающих факторов принимается зоны поражения, где значение пробит-функции достигают величины, соответствующей вероятности 1 проценту.

2.3. Вероятность гибели людей, находящихся в зданиях.

Для расчета условной вероятности гибели людей, находящихся в зданиях, используются данные о гибели людей при разрушении зданий при взрывах и землетрясениях. Исходя из типа зданий и избыточного давления ударной волной, оценивается степень разрушения производственных и административных зданий. Данные приведены в таблице N 3. Условная вероятность травмирования и гибели людей определяется по таблице N 4.

Данные уточняются при их обосновании с указанием источника информации.

Таблица N 3

Данные о степени разрушения производственных, административных зданий и сооружений, имеющих разную устойчивость

Тип зданий, сооружений

Разрушение при избыточном давлении на фронте ударной волны, кПа

Промышленные здания с легким каркасом и бескаркасной конструкцией

Складские кирпичные здания

Одноэтажные складские помещения с металлическим каркасом и стеновым заполнением из листового металла

Бетонные и железобетонные здания и антисейсмические конструкции

Здания железобетонные монолитные повышенной этажности

Котельные, регуляторные станции в кирпичных зданиях

Деревянные дома

Подземные сети, трубопроводы

Трубопроводы наземные

Кабельные подземные линии

Цистерны для перевозки нефтепродуктов

Резервуары и емкости стальные наземные

Поземные резервуары

Таблица N 4

Зависимость условной вероятности поражения человека с разной степенью тяжести от степени разрушения здания

Величина индивидуального риска для i-го человека или риска разрушения i-го здания Ri (год -1) определяется по формуле (25).

где (Pi) принимается равной величине потенциального риска в j-ой области территории, год-1 (определяется методами количественной оценки риска) при расчете индивидуального риска, или принимается равной прогнозируемой частоте реализации в j-ой области территории нагрузок (давление, импульс), способных привести к разрушению i-го здания при расчете риска разрушения зданий;

(Pi) - принимается равной вероятности присутствия человека в j-ой области территории при расчете индивидуального риска, или принимаются равной 1 в случае, если i-e здание располагается в j-ой области территории и нулю, в противном случае, при расчете риска разрушения зданий;

Год-1 - число областей, на которые условно можно разбить территорию объекта, при условии, что величина потенциального риска на всей площади каждой из таких областей можно считать одинаковой.

Электронный текст документа

подготовлен и сверен по:

Бюллетень нормативных актов федеральных

органов исполнительной власти,

При расчете параметров волны давления при сгорании газо-, паровоздушного облака использовался программный комплекс «ТОКСИ+Risk. Оценки риска и расчета последствий аварий на производственных объектах» (в соответствии с Приложением 3 к пункту 18 Методики определения расчетных величин пожарного риска на производственных объектах (Приложение к МЧС РФ от 10 июля 2009 г. № 404)).

Основными структурными элементами алгоритма расчетов являются:

  • определение ожидаемого режима сгорания облака;
  • расчет максимального избыточного давления и импульса фазы сжатия воздушных волн давления для различных режимов;
  • определение дополнительных характеристик взрывной нагрузки;
  • оценка поражающего воздействия.

Ожидаемый режим сгорания облака зависит от типа горючего вещества и степени загроможденности окружающего пространства.

Для расчета были приняты следующие условия:

  • облако ТВС расположено на поверхности земли;
  • класс горючих веществ по степени чувствительности для нефти — 3 – средне чувствительные вещества (по нефти), для газа — 2 – чувствительные вещества (по пропану) для склада пропановых баллонов, 4 – слабо чувствительные вещества (по метану) для газопровода;
  • класс окружающего пространства по степени загроможденности III – средне загроможденное пространство: отдельно стоящие технологические установки, резервуарный парк.

В случае образования паровоздушной смеси в незагроможденном технологическим оборудованием пространстве и его зажигании относительно слабым источником (например, искрой) сгорание этой смеси происходит, как правило, с небольшими видимыми скоростями пламени. При этом амплитуды волны давления малы и могут не приниматься во внимание при оценке поражающего воздействия. В этом случае реализуется так называемый пожар-вспышка, при котором зона поражения высокотемпературными продуктами сгорания паровоздушной смеси практически совпадает с максимальным размером облака продуктов сгорания (т.е. поражаются в основном объекты, попадающие в это облако).

Радиус воздействия высокотемпературных продуктов сгорания паровоздушного облака при пожаре-вспышке производится с использованием программного комплекса «ТОКСИ+Risk. Оценки риска и расчета последствий аварий на производственных объектах» (в соответствии с формулой П3.67 Приложения 3 к пункту 18 Методики определения расчетных величин пожарного риска на производственных объектах (Приложение к МЧС РФ от 10 июля 2009 г. № 404)).

Результаты расчета параметров волны давления при сгорании ТВС в открытом пространстве приведены в таблице 14.

Результаты расчета зон действия поражающих факторов при взрыве облака ТВС в открытом пространстве

№ оборудования по схеме № сценария Расстояние (r, м) от геометрического центра топливовоздушного облака до границы зоны с заданным избыточным давлением, кПа Радиус воздействия высокотемпературных продуктов сгорания при «пожаре-вспышке», м
100 53 28 12 5 3
Площадка фильтров-грязеуловителей ФГ-1…2 С3 6 16 41 71
Резервуар товарной нефти РВС-4500 Р1…Р3 С3 (первичное облако) 37 110 273 476
С3 (вторичное облако) 22 64 160 278
Площадка регулирования давления С3 6 16 41 71
Площадка путевого подогревателя С3 6 16 41 71
Склад пропановых баллонов С5 8 12 21 46 96
Резервуар аварийного топлива для котельной С3 6 16 41 71
Площадка для АЦ для сбора нефти (поз. 12.1…12.3) С3 6 16 41 71
Газопровод высокого давления Д 89х6 мм С5 Максимальное избыточное давление взрыва 2,0 кПа 17

В таблице 15 приведены значения критического давления для людей, находящихся в зданиях (согласно Руководству по оценке пожарного риска для промышленных предприятий).

Значения критического давления для людей, находящихся в зданиях

Вид воздействия Давление воздействия, кПа
Люди, находящиеся в неукрепленных зданиях, погибнут в результате прямого поражения УВ, под развалинами зданий или вследствие удара о твердые предметы 190
Наиболее вероятно, что все люди, находящиеся в неукрепленных зданиях, либо погибнут, либо получат серьезные повреждения в результате действия взрывной волны, либо при обрушении здания или перемещении тела взрывной волной 69 ¸ 76
Люди, находящиеся в неукрепленных зданиях, либо погибнут или получат серьезные повреждения барабанных перепонок и легких под действием взрывной волны, либо будут поражены осколками и развалинами здания 55
Обслуживающий персонал получит серьезные повреждения с возможным летальным исходом в результате поражения осколками, развалинами здания, горящими предметами и т.п. Имеется 10 %-я вероятность разрыва барабанных перепонок 24
Возможна временная потеря слуха или травмы в результате вторичных эффектов взрывной волны, таких, как обрушение зданий, и третичного эффекта переноса тела. Летальный исход или серьезные повреждения от прямого воздействия взрывной волны маловероятны 16
С высокой надежностью гарантируется отсутствие летального исхода или серьезных повреждений. Возможны травмы, связанные с разрушением стекол и повреждением стен здания 5,9 ¸ 8,3

В таблицах 16 и 17 приведены значения критического давления для разрушения ударной волной тех или иных элементов зданий и для повреждений некоторых промышленных конструкций (согласно Руководству по оценке пожарного риска для промышленных предприятий).

Значения критического давления для разрушения ударной волной тех или иных элементов зданий

Характер повреждений элементов зданий DР, кПа
Разрушение остекления 2 ¸ 7
Разрушение перегородок и кровли:
деревянных каркасных зданий 12
кирпичных зданий 15
железобетонных каркасных зданий 17
Разрушение перекрытий:
деревянных каркасных зданий 17
промышленных кирпичных зданий 28
промышленных зданий со стальным и железобетонным каркасом 30
зданий с массивными стенами 42
Разрушение стен:
шлакоблочных зданий 22
деревянных каркасных зданий 28
кирпичных зданий со стенами в 1,5 кирпича 40
зданий с массивными стенами 100
Разрушение фундаментов 215 ¸ 400

Значения критического давления для повреждений некоторых промышленных конструкций

Характер повреждений промышленных конструкций DР, кПа
Незначительное повреждение стальных конструкций каркасов, ферм 8 ¸ 10
Разрушение стальных каркасов, ферм и перемещение оснований 20
Разрушение промышленных стальных несущих конструкций 20 ¸ 30
Разрушение опорных структур резервуаров 100
Перемещение цилиндрических резервуаров, повреждение трубопроводов 50 ¸ 100
Повреждение ректификационных колонн 35 ¸ 80
Незначительные деформации трубопроводных эстакад 20 ¸ 30
Перемещение трубопроводных эстакад, повреждение трубопроводов 35 ¸ 40
Разрушение трубопроводных эстакад 40 ¸ 55

В таблице 18 приведено предельно допустимое избыточное давление при сгорании газо-, паровоздушных смесей в помещениях или в открытом пространстве (согласно Приложения 4 к пункту 20 Методики определения расчетных величин пожарного риска на производственных объектах).

Предельно допустимое избыточное давление при сгорании газо-, паро- или пылевоздушных смесей в помещениях или в открытом пространстве

В таблице 19 приведены значения показателя избыточного давления, вызывающего различные виды разрушений зданий, согласно .

Значения показателя избыточного давления, вызывающего различные виды разрушений

Тип зданий, сооружений Степень разрушения при избыточном давлении на фронте падающей ударной волны, кПа
Слабое Среднее Сильное Полное
Промышленные здания с легким каркасом и бескаркасной конструкцией 10-25 25-35 35-45 >45
Складские кирпичные здания 10-20 20-30 30-40 >40
Одноэтажные складские помещения с металлическим каркасом и стеновым заполнением из листового металла 5-7 7-10 10-15 >15
Бетонные и железобетонные здания и антисейсмические конструкции 25-35 80-120 150-200 >200
Здания железобетонные монолитные повышенной этажности 25-45 45-105 105-170 170-215
Котельные, регуляторные станции в кирпичных зданиях 10-15 15-25 25-35 35-45
Деревянные дома 6-8 8-12 12-20 >20
Подземные сети, трубопроводы 400-600 600-1000 1000-1500 >1500
Трубопроводы наземные 20 50 130
Кабельные подземные линии до 800 >1500
Цистерны для перевозки нефтепродуктов 30-50 50-70 70-80 >80
Резервуары и емкости стальные наземные 35-55 55-80 80-90 >90
Подземные резервуары 40-75 75-150 150-200 >200

Слабые разрушения — частичное разрушение внутренних перегородок, кровли, дверных и оконных коробок, легких построек и др. Основные несущие конструкции сохраняются. Для полного восстановления требуется капитальный ремонт.

Средние разрушения — разрушение меньшей части несущих конструкций. Большая часть несущих конструкций сохраняется и лишь частично деформируется. Может сохраняться часть ограждающих конструкций (стен), однако при этом второстепенные и несущие конструкции могут быть.

Средние разрушения — разрушение меньшей части несущих конструкций. Большая часть несущих конструкций сохраняется и лишь частично деформируется. Может сохраняться часть ограждающих конструкций (стен), однако при этом второстепенные и несущие конструкции могут быть частично разрушены. Здание выводится из строя, но может быть восстановлено.

Сильные разрушения — разрушение большей части несущих конструкций. При этом могут сохраняться наиболее прочные элементы здания, каркасы, ядра жесткости, частично стены и перекрытия нижних этажей. При сильном разрушении образуется завал. В большинстве случаев восстановление нецелесообразно.

Полные разрушения — полное обрушение здания, от которого могут сохраниться только поврежденные (или неповрежденные) подвалы и незначительная часть прочных элементов. При полном разрушении образуется завал. Здание восстановлению не подлежит.

В таблице 20 приведены воздействия ударной волны на человека согласно «Чрезвычайные ситуации техногенного характера. Прогнозирование и оценка: детерминированные методы количественной оценки опасностей техносферы» .

Воздействие ударной волны на человека

Рф, кПа Степень

поражения

Характер поражения
Свыше 100 Крайне Безусловное смертельное поражение.

Получаемые травмы очень часто приводят к смертельному исходу

60-100 Тяжелая Сильная контузия всего организма, повреждение внутренних органов и мозга, тяжелые переломы конечностей. Возможен смертельный исход.
40-60 Средняя Серьёзные контузии, повреждение органов слуха, кровотечение из носа и ушей, сильные вывихи и переломы конечностей.
20-40 Легкая Легкая общая контузия организма, временное повреждение слуха, ушибы и вывихи конечностей

Общая характеристика задач оценки

Для принятия решений по защите от воздействия воздушной ударной волны (ВУВ) взрыва на здания, сооружения, технику или на людей, а также для выработки мер взрывобезопасности необходимы данные, характеризующие взрывы, которые могут происходить во время военных действий, в производственной сфере и в быту. Наиболее достоверные сведения о взрыве можно получить путем проведения эксперимента. Однако, такой подход не всегда применим. Поэтому наиболее распространены расчетные методы, позволяющие определять значения параметров, характеризующих взрывы. В ходе расчетов используются следующие показатели:

  • вид и количество взрывчатого вещества (ВВ);
  • условия взрыва;
  • расстояние от места взрыва до места оценки его последствий;
  • параметры ударной волны;
  • степень повреждения (разрушения) зданий, сооружений, техники или степень поражения людей.

  • Для проведения расчетов разработано и представлено в технической литературе значительное количество функциональных зависимостей, которые связывают между собой эти показатели. Конкретный вид расчетных соотношений, выражающих эти функциональные зависимости, определяется условиями взрыва, к которым относятся: тип ВВ (конденсированное ВВ, газовоздушные смеси, пылевоздушные смеси и др.), место взрыва (воздушный, наземный или заглубленный взрыв), наличие преград, отражающих ударную волну и другие условия.

    Разные авторы предлагают разные виды функциональных зависимостей для определения одних и тех же показателей, позволяющие получить либо большую точность, либо простоту, либо какие-нибудь другие преимущества при проведении расчетов. Поэтому при выборе того или иного соотношения для проведения расчетов следует особое внимание обращать на систему ограничений, определяющих возможность его использования.

    Вся совокупность задач по проведению расчетов может быть разделена на две группы: задачи прогнозирования последствий взрыва по заданному количеству ВВ и задачи определения количества ВВ по заданным последствиям взрыва.

    Задачи прогнозирования соответствуют ситуации, когда взрыва еще не было, т.е. требуется рассчитать показатели, характеризующие будущий взрыв. В таких задачах в качестве исходных данных обычно используются сведения о количестве ВВ и об условиях взрыва. При этом в результате расчетов должны быть получены значения параметров ударной волны (или других поражающих факторов) на заданном расстоянии от места взрыва (прямая задача), или определено расстояние от места взрыва, на котором параметры ударной волны будут иметь заданное значение (обратная задача).

    Задачи определения исходных характеристик ВВ по результатам взрыва обычно приходится решать при расследовании и анализе причин аварийных взрывов. В этих задачах известны условия взрыва, место взрыва и степень разрушений по мере удаления от его эпицентра. В результате решения должно быть определено количество взорвавшегося вещества. Для расчетов в этих задачах используются те же функциональные зависимости между степенью повреждения, количеством ВВ и расстоянием от места взрыва, что и при решении задач прогнозирования.

    Настоящий курс лекций не предусматривает подробного рассмотрения всего многообразия вариантов проведения расчетов для различных условий взрыва и поражающих факторов. Далее будут рассматриваться только приближенные методы проведения расчетов, связанные с наиболее распространенными типами взрывов конденсированных ВВ и ГВС в открытом, не замкнутом пространстве. Из числа поражающих факторов взрыва будет рассматриваться только воздушная ударная волна.

    Расчетные соотношения, используемые при решении задач.

    Тротиловый эквивалент массы ВВ.

    Количество взрывчатого вещества или его массу М BB при проведении расчетов выражают через тротиловый эквивалент М Т. Тротиловый эквивалент представляет собой массу тротила, при взрыве которой выделяется столько же энергии, сколько выделится при взрыве заданного количества конкретного ВВ. Значение тротилового эквивалента определяется по соотношению:

    (1)

    \[М_{Т}=kM_{ВВ}\]

    где:
    M BB — масса взрывчатого вещества;

    k — коэффициент приведения взрывчатого вещества к тротилу1 (см. Таблицу 1).

    Таблица 1. Значения коэффициента k приведения взрывчатого вещества к тротилу

    Выражение (1) составлено для взрыва, при котором ударная волна распространяется во все стороны от точки взрыва беспрепятственно, т.е. в виде сферы. Очень часто на практике взрыв происходит на некоторой поверхности, например, на земле. При этом ударная волна распространяется в воздухе в виде полусферы.

    Для взрывов на абсолютно твердой поверхности вся выделившаяся при взрыве энергия распространяется в пределах полусферы и, следовательно, значение массы взрывающегося вещества как бы удваивается (в определенных случаях можно говорить о сложении прямой и отраженной волны).

    Для взрыва на не абсолютно твердой поверхности, например, на грунте, часть энергии расходуется на образование воронки. Учет этого расхода выполняется с помощью коэффициента ƞ, значения которого приведены в Таблице 2. Чем меньше подстилающая поверхность позволяет затрачивать энергию на образование воронки, тем ближе значение коэффициента ƞ к 1. Другой предельный случай соответствует ситуации, когда подстилающая поверхность беспрепятственно пропускает энергию взрыва, например, при взрыве в воздухе. В этом случае значение коэффициента равно 0.5.

    С учетом изложенного значение MT в общем случае определяется по формуле:

    (2)

    \[М_{Т}=2ƞkM_{ВВ}\]

    Выражение (2) для взрыва в воздухе, то есть при ƞ = 0.5, принимает вид (1).

    Таблица 2. Значения коэффициента ƞ, учитывающего характер подстилающей поверхности

    Закон подобия при взрывах

    Расчеты параметров ударной волны основываются на использовании соотношения, связывающего параметры взрывов разной мощности. Таким соотношением является закон подобия кубического корня . Согласно этому закону значения параметров ударной волны для взрыва некоторой мощности можно пересчитать для взрывов других мощностей, пользуясь выражениями закона подобия:

    (3)

    \ \[τ_{2}=τ_{1}\sqrt{\frac{M_{T2}}{M_{T1}}}\]

    где: R 2 ,R 1 — расстояния от центров двух взрывов до некоторых точек 1 и 2, в которых параметры ударной волны этих взрывов равны между собой;

    M T2 , M T1 — массы зарядов (точнее: эквиваленты масс, приведенные к некоторому эталону, в нашем случае к тротилу);

    τ 2 , τ 1 — время с момента взрыва до прихода ударной волны в эти точки.

    Выражение (3) можно представить в виде:

    (4)

    \[\frac{R_{2}}{\sqrt{{M_{T2}}}}=\frac{R_{1}}{\sqrt{{M_{T1}}}}=\frac{R}{\sqrt{{M_{T}}}}=\overline{R}\]

    Величина R называется приведенным радиусом взрыва и широко используется в различных расчетных соотношениях для определения параметров ударной волны взрыва.

    Оценка параметров ударной волны при взрыве конденсированных ВВ

    Избыточное давление ΔP для свободно распространяющейся сферической воздушной ударной волны убывает по мере удаления от места взрыва. Поэтому расчет его значений обычно проводится на основании соотношений, в которых давление является функцией двух аргументов — массы ВВ и расстояния от места взрыва.

    Сложность разработки и последующего использования таких аналитических выражений определяется следующим обстоятельством. Скорость спада значения ΔP по мере удаления от места взрыва изменяется за счет влияния на ударную волну среды, в которой она распространяется. Чем больше расстояние от места взрыва, тем сильнее искажается характер изменения давления во фронте ударной волны. Для двух ударных волн, которые при одинаковых условиях распространения в некоторый момент времени имели одно и тоже значение ΔP, в последующие моменты значения ΔP будут отличаться, если предыстория распространения этих волн была разной. Следовательно, расчетные соотношения для определения значений ΔP в эти последующие моменты также должны быть разными.

    По изложенным причинам в технической литературе представлен достаточно широкий спектр расчетных соотношений для определения значений ΔP, каждое из которых имеет свою сферу применения и назначение. Например, для воздушного взрыва, для наземного взрыва, для малых расстояний от места взрыва, для значительных расстояний от места взрыва, для относительно небольших зарядов ВВ, для крупных зарядов ВВ и т.д.

    При дальнейшем изложении в материалах курса будет использоваться одно базовое соотношение:

    (5)

    \[ΔP_{Ф}=\frac{84}{\overline{R}}+\frac{270}{{\overline{R}^{2}}}+\frac{700}{{\overline{R}^{3}}},(кПа),\]

    где R определяется из (2), (4).

    Это соотношение известно в технической литературе под названием «формула М. А. Садовского » и широко используется при проведении практических расчетов как для наземных, так и для воздушных взрывов.

    При необходимости решать обратную задачу, т.е. определять расстояние от места взрыва по заданному значению ΔP Ф, можно либо решать уравнение третьей степени (5) относительно R , либо воспользоваться соотношением:

    (6)

    \[\overline{R}=\sqrt{^{2}-1}\]

    Формула (6) дает хорошее совпадение с результатами точного решения уравнения (5). Для значений R в интервале от 2 до 12 ошибка не превышает 10 %. При этом расхождение тем больше, чем больше ΔP Ф.

    Удельный импульс I определяется по соотношению

    (7)

    \

    где ΔP(t) — функция, характеризующая изменение избыточного давления во фронте ударной волны за период времени от 0 до τ + .

    Кроме приведенных соотношений в технической литературе имеются соотношения для расчета значений и других параметров ударной волны: максимального давления разряжения, длительности фазы разряжения, скорости распространения ударной волны, давления скоростного напора, температуры во фронте ударной волны и др., однако в данном курсе эти соотношения не рассматриваются.

    Пример 1

    Прямая постановка задачи

    Определить избыточное давление, которое будет испытывать прибор, установленный на расстоянии 10 м от места взрыва 1кг гексогена во взрывном устройстве, размещенном на грунте.

    2. Определение R :

    \[\overline{R}=\frac{R}{\sqrt{M_{T}}}=\frac{10}{\sqrt{1,56}}=8,62\]

    3. Определение ΔP Ф:

    \[ΔP_{Ф}=\frac{84}{\overline{R}}+\frac{270}{{\overline{R}^{2}}}+\frac{700}{{\overline{R}^{3}}}=\frac{84}{8,62}+\frac{270}{{8,62^{2}}}+\frac{700}{{8,62^{3}}}=14,5 кПа\]

    Обратная постановка задачи

    Определить максимальное расстояние, на котором допускается установить прибор, выдерживающий давление 14,5 кПа, от места взрыва 1 кг гексогена во взрывном устройстве, размещенном на грунте.

    1. Определение R :

    \[\overline{R}=\sqrt{^{2}-1}=\sqrt{^{2}-1}=8,37\]

    2. Определение тротилового эквивалента:

    \[М_{Т}=2ƞkM_{ВВ}=2\cdot0,6\cdot1,3\cdot1=1,56 кг\]

    3. Определение R:

    Оценка параметров ударной волны при взрыве газовоздушных смесей

    Параметры ударной волны на расстояниях R < r o

    При взрывах газовоздушных смесей параметры внутри газового облака могут изменяться в очень широких пределах в зависимости от условий взрыва, концентрации горючей компоненты и характера взрывного горения, которые при прогнозировании взрывов, особенно на открытом воздухе, учесть практически невозможно. Поэтому обычно расчеты проводят для худшего случая, при котором разрушительные последствия взрыва наибольшие.

    Таким наихудшим случаем является детонационное горение смеси стехиометрического состава. Скорость распространения процесса детонационного горения внутри облака очень велика и превышает скорость звука. Давление внутри облака за время взрыва вообще говоря не постоянно. Однако для проведения приближенной оценки параметров взрыва можно условно принять, что облако имеет форму полусферы с центром на поверхности земли, взрыв ГВС происходит мгновенно и давление в процессе взрыва одинаково и постоянно во всех точках, находящихся внутри облака.

    Для большинства углеродоводородосодержащих газовых смесей стехиометрического состава можно принять, что давление внутри газового облака составляет 1700 кПа. Для проведения более точных расчетов в технической литературе приводятся расчетные соотношения, позволяющие рассчитать скорость детонационного горения, время полной детонации облака, давление в детонационной волне и др.

    Параметры ударной волны на расстояниях R > r o

    Формулы для определения значений параметров ударной волны на расстояниях, превышающих радиус полусферы газового облака в окружающем воздухе, получены путем аппроксимации численного решения задачи о детонации пропановоздушной смеси, выполненной Б. Е. Гельфандом. Решение получено интегрированием системы нестационарных уравнений газовой динамики в сферических координатах в переменных Лагранжа и позволяет получать результаты удовлетворительно согласующиеся с экспериментальными данными для горючих смесей различных углеводородов с воздухом.

    Максимальное избыточное давление во фронте ударной волны (кПа):

    (8)

    \[ΔP_{Ф}=P_{0}\cdot \overline{P};\]

    (9)

    \[\lg\overline{P}=0,65-2,18\lg\overline{R}+0,52(\lg\overline{R})^{2};\] \[\overline{R}=\frac{R}{\sqrt{M_{T}}},\]

    где: MТ — тротиловый эквивалент наземного взрыва полусферического облака ГВС (кг);

    P 0 — атмосферное давление, равное 100 кПа.

    Удельный импульс (Па ⋅ с):

    (10)

    \

    (11)

    \

    Тротиловый эквивалент (кг) определяется из соотношения (2), в котором k=Q/QТ и ƞ=1, т.е. в предположении, что энергия взрыва полусферического облака полностью отражена поверхностью, над которой это облако образовалось. С учетом изложенного:

    (12)

    \

    где: M В — масса вещества, взрывающегося в составе облака ГВС (кг);

    Q — теплота, выделяющаяся при сгорании данного вещества (кДж/кг);

    QТ — теплота взрыва тротила (4520 кДж/кг).

    Q представляет собой табличную величину (таблица 3), которая показывает количество энергии, выделяющейся при взрыве (сгорании) единицы массы данного вещества.

    Значение M В определяется соотношением

    (13)

    \

    где: M Хр — масса вещества, находившегося в хранилище до аварии (до взрыва);

    δ — коэффициент, зависящий от способа хранения вещества, показывающий долю вещества, переходящую при аварии в газ:

    δ=1 — для газов при атмосферном давлении,

    δ=0,5 — для сжиженных газов, хранящихся под давлением,

    δ=0,1 — для сжиженных газов, хранящихся изотермически,

    δ=0,02–0,07 — для растекшихся ЛВЖ;

    Объем газового облака V 0 и размер полусферы газового облака r 0 зависят от количества исходного вещества, находившегося в хранилище до аварии, и способа его хранения. Определение этих параметров может быть выполнено по формулам:

    (14)

    \ \

    где: V a — объем киломоля идеального газа (постоянная Авогадро: V a =22,4 м³/кмоль);

    μ — молярная масса хранящегося вещества (кг/кмоль);

    C стх — стехиометрическая объемная концентрация (в абсолютных долях).

    Приближенно для наиболее часто используемых углеводородов можно пользоваться при расчетах формулой:

    где: M Хр — количество вещества, находившегося в хранилище до аварии (взрыва) в т;

    0.6 — коэффициент, учитывающий способ хранения.

    Значения параметров, характеризующих некоторые вещества, приведены в таблице 3.

    Таблица 3. Значения параметров, характеризующих некоторые вещества и их смеси с воздухом

    Пример 2

    Определить с помощью расчета по формулам избыточное давление и удельный импульс во фронте ВУВ на расстоянии 100 м от емкости, в которой находится 10 т. пропана, хранящегося в жидком виде под давлением, при ее разгерметизации и взрыве образовавшейся ГВС.

    1. Определение массы пропана в составе ГВС

    2. Определение тротилового эквивалента

    3. Определение приведенного радиуса взрыва

    4. Определение избыточного давления во фронте ударной волны

    \[\lg\overline{P}=0,65-2,18\lg\overline{R}+0,52(\lg\overline{R})^{2}=0,65-2,18\cdot\lg2,14+0,52\cdot(\lg2,14)^{2}=-0,0135,\]

    \[\overline{P}=10^{0,0135}=0,97,\]

    следовательно

    \[ΔP_{Ф}=P_{0}\cdot \overline{P}=100\cdot0,97=97 кПа\]

    5. Определение значения удельного импульса ударной волны

    \[\overline{I}=10^{1,84}=69,2,\] \

    Приближенная оценка параметров взрывной волны за пределами облака может быть проведена по таблице 4, в которой представлены значения избыточного давления ΔP Ф и эффективного времени действия фазы сжатия θ, заранее рассчитанные для различных значений R/r 0 . Значения параметров, указанных в таблице, получены исходя из давления внутри газового облака 1700 кПа.

    Таблица 4. Значения максимального избыточного давления и эффективного времени действия ударной волны при взрыве ГВС

    R/r 0 0–1 1.01 1.04 1.08 1.13 1.2 1.4 1.8
    ΔP Ф, кПа 1700 1232 814 568 500 400 300 200
    10 3 θ/r 0 , с/м 0.37 0.53 0.74 0.97 1.00 1.07 1.10 1.25
    R/r0 2.7 3 4 5 6 8 12 15 40
    ΔP Ф, кПа 100 80 50 40 30 20 10 7.8 2.5
    10 3 θ/r 0 , с/м 1.7 1.78 2.18 2.30 2.59 3.02 3.53 3.76 4.39

    Пример 3

    Определить приближенным методом, по таблице избыточное давление во фронте ВУВ на расстоянии 100 м от емкости, в которой находится 55 т пропана, хранящегося в жидком виде под давлением, при ее разгерметизации и взрыве образовавшейся ГВС.

    1. Определение r 0

    2. Определение R/r 0 = 100/31 = 3,2

    3. По таблице 4 находим, что ΔP Ф = 80 кПа (с учетом интерполяции 74 кПа).

    Оценка степени повреждения зданий в условиях городской застройки

    При взрывах в условиях городской застройки характер распространения ударной волны существенно изменяется из-за ее многократного отражения и экранирования стенами зданий. По этим же причинам обычно используемые для расчета значений ΔP формулы, в том числе и рассмотренные выше, неприменимы.

    Для оценки степени повреждения или разрушения зданий в городе широко используется формула, полученная в Великобритании по результатам анализа последствий бомбардировок во время второй мировой войны:

    (15)

    \

    где: R — расстояние от места взрыва в метрах;

    M T — тротиловый эквивалент заряда в килограммах;

    K — коэффициент, соответствующий различным степеням разрушения:

    К<5.6 — полное разрушение зданий;

    К=5.6–9.6 — сильные разрушения здания (здание подлежит сносу);

    К=9.6–28 — средние разрушения (возможно восстановление здания);

    К=28–56 — разрушение внутренних перегородок, дверных и оконных проемов;

    К=56 — разрушение 90% остекления.

    Пример 4

    Определить для условий городской застройки расстояние, начиная с которого здания получат сильные разрушения при взрыве боеприпаса, начиненного 500 кг гексогена.

    1. Определение тротилового эквивалента:

    \[М_{Т}=kM_{ВВ}=1,3\cdot500=650 кг\]

    2. Определение искомого расстояния:

    Оценка степени повреждения отдельно стоящих зданий

    Под воздействием ударной волны здания и сооружения ведут себя как упругие колебательные системы. Расчетная оценка такого воздействия требует решения достаточно сложных динамических задач, связанных с описанием поведения упругих конструктивных элементов зданий и сооружений под воздействием ударных нагрузок, определяемых изменяющимися во времени и пространстве параметрами ударной волны. Возникающие в конструктивных элементах нагрузки зависят от параметров волны, характеристик объекта, его размеров и ориентации относительно фронта волны.

    Наиболее точную оценку последствий воздействия ударной волны на конкретный объект позволяет получить эксперимент, проводимый на его макете с соблюдением правил подобия. Однако применение экспериментальных методов оценки далеко не всегда возможно.

    Накопленный опыт исследования объектов, подвергавшихся воздействию взрывов, и результатов экспериментов с макетами выявил ряд закономерностей, позволяющих упрощенными методами оценивать возможные ожидаемые последствия воздействия взрывов на здания и сооружения. Ниже будут рассмотрены два метода: по допустимому давлению при взрыве и по диаграмме разрушения объекта.

    По допустимому давлению при взрыве

    Избыточные давления, при которых наступают различные степени разрушений одного из возможных типов зданий, приведены в Таблице 5. При использовании таблицы следует иметь ввиду, что она соответствует ударной волне ядерного взрыва, т.е. учитывает воздействие на объект только избыточного давления и не учитывает поражающее действие импульса. Для других видов взрывов, например для взрывов конденсированных ВВ или ГВС, значения давлений, приведенных в таблице, должны быть увеличены в 1.5 раза и более в зависимости от мощности взрыва и после этого сопоставлены со значениями избыточного давления. рассчитанными по формуле (5). При использовании таблицы следует иметь ввиду, что результат оценки будет приблизительным, поскольку не учитывается действие импульса.

    Таблица 5. Действие ΔP Ф на объекты и людей

    Объект воздействия Степень воздействия ΔP Ф
    Кирпичное здание производственного типа Полное разрушение > 70 кПа
    Сильные разрушения 33–70 кПа
    Средние разрушения 25–33 кПа
    Слабые разрушения 12–25 кПа
    Остекление Разрушение на 90 % 5 — 10 кПа
    на 50 % 2 — 5 кПа
    на 5 % 1 — 2 кПа
    Люди Крайне тяжелое поражение > 100 кПа
    Тяжелое поражение 60–100 кПа
    Среднее поражение 40–60 кПа
    Легкие поражения 20–40 кПа

    В таблице в качестве примера приведены данные только для одного типа здания. В справочной литературе имеются аналогичные сведения для большого числа различных зданий и сооружений. В таблице также приведены данные, позволяющие оценить степень поражения людей действием давления ударной волны.

    Пример 5

    Определить по таблице степень разрушения кирпичного здания при взрыве на расстоянии 10м от него на грунте заряда гексогена массой 10 кг.

    1. Определение тротилового эквивалента:

    2. Определение R

    3. Определение ΔP Ф:

    4. Увеличивая табличные значения давлний или уменьшая рассчитанное значение ΔP Ф в 1.5 раза по таблице 5 определяем, что здание получит средние разрушения.

    По диаграмме разрушений

    Более точная оценка может быть получена на основе использования диаграмм, в которых результат воздействия ударной волны зависит от давления и импульса. Каждому конкретному объекту соответствует своя диаграмма степени разрушений, типичная форма которой приведена на рисунке 1.

    Как следует из диаграммы, лишь небольшая зона А характеризуется зависимостью степени разрушений как от давления, так и от импульса. Остальная часть плоскости соответствует прямым ΔP=const (зона В), где влияние импульса мало, и прямым I=const (зона С), где не ощущается влияния давления.

    Недостаток такого подхода к оценке степени разрушения зданий состоит в том, что составление диаграммы для конкретного объекта представляет собой достаточно сложную задачу.

    Пример 6

    Определить по диаграмме степень разрушения кирпичного здания, если на расстоянии 10 м от него произойдет взрыв 10 кг гексогена на грунте.

    1. Определение тротилового эквивалента:

    \[М_{Т}=2ƞkM_{ВВ}=2\cdot0,6\cdot1,3\cdot10=1,56 кг\]

    2. Определение R

    \[\overline{R}=\frac{R}{\sqrt{M_{T}}}=\frac{10}{\sqrt{15,6}}=4\]

    3. Определение ΔP Ф:

    \[ΔP_{Ф}=\frac{84}{\overline{R}}+\frac{270}{{\overline{R}^{2}}}+\frac{700}{{\overline{R}^{3}}}=\frac{84}{4}+\frac{270}{{4^{2}}}+\frac{700}{{4^{3}}}=48,8 кПа\]

    4. Определение значения удельного импульса:

    5. По диаграмме разрушений кирпичных зданий определяем, что здание получит средние разрушения.

    Рисунок 1. Диаграмма разрушения кирпичных зданий.

    Определение безопасных расстояний при взрывах

    Безопасными расстояниями для людей при взрывах считаются такие расстояния, при которых человек не получает травм. При прямом воздействии воздушной ударной волны на человека границей опасной зоны является расстояние от центра взрыва до условной линии (радиус окружности), где давление фронта ударной волны ΔP Ф не превышает 10 кПа.

    В Российской Федерации установлены единые правила определения безопасных расстояний обязательные к соблюдению всеми организациями, выполняющими взрывные работы. За основу проведения расчета минимально возможного безопасного расстояния в этих правилах принята формула:

    (16)

    \

    где: R > R без — безопасное расстояние в метрах;

    M T — тротиловый эквивалент взрывчатого вещества в килограммах;

    К — коэффициент, зависящий от условий взрыва.

    Значения коэффициента К при размещении людей без укрытий устанавливаются в диапазоне от 30 до 45 для разных типов взрывов. В исключительных случаях, когда требуется максимально возможное приближение персонала к месту взрыва, R без может быть определено при коэффициенте 15, а например при укрытии людей в блиндажах К составляет 9,3.

    Единые правила определения безопасных расстояний предусматривают правила расчета этих расстояний не только для человека, но и для зданий (сооружений), и для различных видов взрывов.

    Пример 7

    Определить безопасное расстояние для размещения людей в блиндаже при взрыве 50 кг аммонала.

    1. Определение тротилового эквивалента:

    \[М_{Т}=ƞkM_{ВВ}=0,99\cdot50=49,5 кг\]

    2. Определение безопасного расстояния:

    \

    Материалы факультета военного обучения (МГТУ им. H. Э. Баумана)

    В соответствии с для оценки риска чрезвычайной ситуации при разработке подраздела проектной документации выбираются только те техногенные чрезвычайные ситуации, зоны действия поражающих факторов которых выходят за границы проектной застройки объектов и (при наличии) примыкающей к ней санитарно-защитной зоны.

    Согласно определение (расчет) границ и характеристик зон воздействия поражающих факторов аварий, которые могут привести к техногенной чрезвычайной ситуации как на объектах, так и за их пределами, а также определение вероятности поражения в определенной точке селитебной территории в результате реализации сценария развития чрезвычайной ситуации должно производиться по методикам, утвержденным, согласованным или рекомендованным федеральными органами исполнительной власти. Рекомендованные методики для определения границ и характеристик зон воздействия поражающих факторов аварии приведены в приложении Т (таблица 3).

    На основании для выявления пожароопасных ситуаций осуществляется деление технологического оборудования (технологических систем) при их наличии на объектах на участки. Указанное деление выполняется исходя из возможности раздельной герметизации этих участков при возникновении аварии. Рассматриваются пожароопасные ситуации как на основном, так и вспомогательном технологическом оборудовании. Кроме этого учитывается также возможность возникновения пожара в зданиях, сооружениях и строениях различного назначения, расположенных на территории объектов.

    В перечне пожароопасных ситуаций применительно к каждому участку, технологической установке, зданиям объектов выделяются группы пожароопасных ситуаций, которым соответствуют одинаковые модели процессов возникновения и развития.

    Определение массы, участвующей в аварии, проводится в соответствии с 3].

    В приложениях к подразделу «ПМ ГОЧС» рекомендуется приводить копии документов, подтверждающих применение того или иного программного обеспечения, применяемого для расчетов границ и характеристик зон воздействия поражающих факторов аварий, в том числе:

    • свидетельство о государственной регистрации программы для электронно-вы­числительных машин с указанием номера и даты, а также органа, выдавшего свидетельство;
    • реквизиты программы, приведенные на основании договора на право пользования программным обеспечением.
    Прогнозирование масштабов зон заражения АХОВ выполняется на основании с учетом требований .

    Результаты расчетов вероятных зон действия поражающих факторов аварий, которые могут привести к чрезвычайной ситуации техногенного как на объектах, так и за их пределами рекомендуется приводить в табличной форме с указанием следующих параметров:

    • для пожара пролива:
    1. площадь пролива опасного вещества;
    2. удельная массовая скорость выгорания опасного вещества;
    3. уровни поражения тепловым излучением:
    - безопасно для человека в брезентовой одежде (4,2 кВт/м 2);
    - без негативных последствий для человека в течение длительного времени (1,4 кВт/м 2);
    • для огненного шара:
    диаметр огненного шара;
    1. время существования «огненного шара»;
    2. зона ожога третьей степени (320 кДж/м 2);
    3. зона ожога второй степени (220 кДж/м 2);
    4. зона ожога первой степени (120 кДж/м 2);
    • для взрыва:
    1. радиус зоны действия поражающих факторов при полных разрушениях (избыточное давление – 100 кПа);
    2. радиус зоны действия поражающих факторов при сильных разрушениях (избыточное давление – 53 кПа);
    3. радиус зоны действия поражающих факторов при средних разрушениях (избыточное давление – 28 кПа);
    4. радиус зоны действия поражающих факторов при слабых разрушениях (избыточное давление – 12 кПа);
    5. нижний порог повреждений человека волной давления (избыточное давление – 5 кПа).
    • для заражения АХОВ:
    1. тип АХОВ;
    2. масса АХОВ;
    3. полная глубина зоны химического заражения;
    4. площадь зоны возможного химического заражения.
    В соответствии с приложением № 5 при оценке последствий воздействия опасных факторов аварий на объектах и для оценки степени возможного поражения людей и разрушения зданий, сооружений по вычисленным параметрам поражающих факторов могут использоваться как детерминированные (учитывающие только величину поражающих факторов), так и вероятностные критерии (по пробит-функции, характеризующей вероятность возникновения последствий определенного масштаба в зависимости от уровня воздействия).

    Детерминированные критерии устанавливают значения поражающего фактора, при которых наблюдается тот или иной уровень поражения (разрушения).

    Детерминированные критерии присваивают определенной величине негативного воздействия поражающего фактора конкретную степень поражения людей, разрушения зданий, инженерно-технических сооружений.

    Детерминированные критерии поражения тепловым излучением

    При оценке воздействия теплового излучения основным критерием поражения является интенсивность теплового излучения. Значения предельно допустимой интенсивности теплового излучения приведены в таблице 1. Для определения числа пострадавших рекомендуется принимать значение интенсивности теплового излучения, превышающее 7,0 кВт/м 2 .

    Таблица 1 – Значения предельно допустимой интенсивности теплового излучения

    Степень поражения

    Интенсивность
    теплового излучения, кВт/м 2

    Без негативных последствий в течение длительного времени 1,4
    Безопасно для человека в брезентовой одежде 4,2
    Непереносимая боль через 20–30 с
    Ожог первой степени через 15–20 с
    Ожог второй степени через 30–40 с
    Воспламенение хлопка-волокна через 15 мин
    7,0
    Непереносимая боль через 3–5 с
    Ожог первой степени через 6–8 с
    Ожог второй степени через 12–16 с
    10,5
    Воспламенение древесины с шероховатой поверхностью (влажность 12 %) при длительности облучения 15 мин 12,9
    Воспламенение древесины, окрашенной масляной краской по строганной поверхности; воспламенение фанеры 17,0

    Воздействие открытого пламени и тепловой радиации от пожара на технологическое оборудование, наружные установки оценивается по значению поглощенной дозы тепловой радиации:
    • D пор – пороговое значение дозы поглощенной тепловой радиации, кВтс/м 2 , ниже которого оборудование получает только слабые повреждения (k повр = 0,1);
    • D гиб – значение дозы поглощенной тепловой радиации, кВтс/м 2 , выше которого оборудование считается полностью разрушенным (k повр = 1,0).
    Значения D пор и D гиб для оборудования разных классов чувствительности к воздействию тепловой радиации приведены в таблице 2.

    Таблица 2 – Значения D пор и D гиб для оборудования разных классов чувствительности
    к воздействию тепловой радиации

    Класс
    чувствительности
    оборудования

    Тип оборудования

    D пор , кВт·с/м 2

    D гиб , кВт·с/м 2

    I (высокочувствительное) Расположенное вне укрытий сложное технологическое оборудование 3300 10000
    II (среднечувствительное) Оборудование в блок-контейнерах или индивидуальных укрытиях.
    Незащищенные крановые узлы, средства электрохимической защиты, контрольные пункты телемеханики, опоры линий электропередачи и другое незащищенное технологическое оборудование с фланцевыми соединениями с чувствительными к нагреву материалами-уплотнителями
    8300 25000
    III (слабочувствительное) Наземные трубопроводы, крановые узлы в защитном укрытии 35000 45000
    Подземное технологическое оборудование принимается нечувствительным к термическому воздействию и при любой аварии считается неповрежденным (k повр = 0).

    Для поражения человека тепловым излучением используется значение величины пробит-функции.

    При использовании пробит-функции в качестве зон стопроцентного поражения принимаются зоны поражения, где значение пробит-функции достигает величины, соответствующей вероятности, равной 90 %. В качестве зон, безопасных с точки зрения воздействия поражающих факторов, принимаются зоны поражения, где значения пробит-функ­ции достигают величины, соответствующей вероятности, равной 1 %.

    Условная вероятность поражения человека, попавшего в зону непосредственного воздействия пламени пожара, пролива или факела, принимается равной 1.
    Для пожара-вспышки следует принимать, что условная вероятность поражения человека, попавшего в зону воздействия высокотемпературными продуктами сгорания газопаровоздушного облака, равна 1. За пределами этой зоны условная вероятность поражения человека принимается равной 0.
    При расчете вероятности поражения человека тепловым излучением рекомендуется учитывать возможность укрытия (например, в здании или за ним).
    Детерминированные критерии поражения воздушной ударной волной.
    Величина избыточного давления на фронте падающей воздушной ударной волны значением 5 кПа принимается безопасной для человека. Воздействие на человека воздушной ударной волны с избыточным давлением на фронте более 120 кПа рекомендуется принимать в качестве смертельного поражения. Для определения числа пострадавших рекомендуется принимать значение избыточного давления, превышающее 70 кПа.

    Критерии разрушения типовых промышленных зданий от избыточного давления приведены в таблице 3.

    Таблица 3 – Критерии разрушения типовых промышленных зданий от избыточного давления



    Степени разрушения различных административных, производственных зданий и сооружений от воздействия избыточного давления воздушной ударной волны приведены в таблице 4.

    Таблица 4 – Степени разрушения различных административных, производственных зданий и сооружений от воздействия избыточного давления воздушной ударной волны

    Тип зданий, сооружений

    Разрушение при избыточном давлении на фронте
    ударной волны, кПа

    Слабое Среднее

    Сильное

    Полное

    Промышленные здания с тяжелым металлическим или железобетонным каркасом 20–30 30–40 40–50 >50
    Промышленные здания с легким каркасом и бескаркасной конструкции 10–20 25–35 35–45 >45
    Складские кирпичные здания 10–20 20–30 30–40 >40
    Одноэтажные складские помещения с металлическим каркасом и стеновым заполнением из листового металла 5–7 7–10 10–15 >15
    Бетонные и железобетонные здания и антисейсмические конструкции 25–35 80–120 150–200 >200
    Здания железобетонные монолитные повышенной этажности 25–45 45–105 105–170 170–215
    Котельные, регуляторные станции в кирпичных зданиях 10–15 15–25 25–35 35–45
    Деревянные дома 6–8 8–12 12–20 >20
    Подземные сети, трубопроводы 400–600 600–1000 1000–1500 1500
    Трубопроводы наземные 20 50 130 -
    Кабельные подземные линии до 800 - - 1500
    Цистерны для перевозки нефтепродуктов 30 50 70 80
    Резервуары и емкости стальные наземные 35 55 80 90
    Подземные резервуары 40 75 150 200

    Условная вероятность травмирования и гибели людей, находящихся в зданиях, в зависимости от степени разрушения зданий от воздействия воздушной ударной волны определяется по таблице 5.

    Таблица 5 – Условная вероятность травмирования и гибели людей, находящихся в зданиях, в зависимости от степени разрушения зданий от воздействия воздушной ударной волны



    Для расчета условной вероятности разрушения объектов и поражения людей ударными волнами используют пробит-функции.

    При использовании пробит-функций в качестве зон 100 %-ного поражения принимаются зоны поражения, где значение пробит-функции достигает величины, соответствующей вероятности в 90 %. В качестве зон, безопасных с точки зрения воздействия поражающих факторов, принимаются зоны поражения, где значения пробит-функции достигают величин, соответствующих вероятности в 1 %.

    Критерии токсического поражения

    Границы зон токсического поражения опасным веществом рассчитываются по смертельной и пороговой токсодозам при ингаляционном воздействии на организм человека либо по пробит-функциям.
    Сравнением с пороговыми и смертельными токсодозами определяются расстояния, соответствующие смертельному поражению и пороговому воздействию.
    Для оценки вероятности смертельного поражения человека используется пробит-функция.

    При расчете воздействия токсических веществ на человека рекомендуется учитывать возможность укрытия, например в здании, а также применения средств индивидуальной защиты (противогазов).

    Перечень нормативных документов

    1. Методика определения расчетных величин пожарного риска на производственных объектах, утвержденная приказом МЧС России от 10.07.2009 № 404.
    2. Руководство по безопасности «Методические основы по проведению анализа опасностей и оценки риска аварий на опасных производственных объектах», утвержденное приказом Федеральной службы по экологическому, технологическому и атомному надзору от 11.04.2016 № 144.
    3. Руководство по безопасности «Методика моделирования распространения аварийных выбросов опасных веществ», утвержденное приказом Федеральной службы по экологическому, технологическому и атомному надзору от 20.04.2015 № 158.
    4. ГОСТ Р 22.2.02−2015 «Безопасность в чрезвычайных ситуациях. Менеджмент риска чрезвычайной ситуации. Оценка риска чрезвычайной ситуации при разработке проектной документации объектов капитального строительства».
    5. СП 165.1325800.2014 «СНиП 2.01.51-90.Инженерно-технические мероприятия по гражданской обороне».
    6. РД 52.04.253-90 «Методика прогнозирования масштабов заражения сильнодействующими и ядовитыми веществами при авариях (разрушениях) на химически опасных объектах и на транспорте».